| 1 | #ifndef MYCPP_GC_LIST_H
|
| 2 | #define MYCPP_GC_LIST_H
|
| 3 |
|
| 4 | #include <string.h> // memcpy
|
| 5 |
|
| 6 | #include <algorithm> // sort() is templated
|
| 7 |
|
| 8 | #include "mycpp/common.h" // DCHECK
|
| 9 | #include "mycpp/comparators.h"
|
| 10 | #include "mycpp/gc_alloc.h" // Alloc
|
| 11 | #include "mycpp/gc_builtins.h" // ValueError
|
| 12 | #include "mycpp/gc_slab.h"
|
| 13 |
|
| 14 | // GlobalList is layout-compatible with List (unit tests assert this), and it
|
| 15 | // can be a true C global (incurs zero startup time)
|
| 16 |
|
| 17 | template <typename T, int N>
|
| 18 | class GlobalList {
|
| 19 | public:
|
| 20 | int len_;
|
| 21 | int capacity_;
|
| 22 | GlobalSlab<T, N>* slab_;
|
| 23 | };
|
| 24 |
|
| 25 | #define GLOBAL_LIST(name, T, N, array) \
|
| 26 | GcGlobal<GlobalSlab<T, N>> _slab_##name = {ObjHeader::Global(TypeTag::Slab), \
|
| 27 | {.items_ = array}}; \
|
| 28 | GcGlobal<GlobalList<T, N>> _list_##name = { \
|
| 29 | ObjHeader::Global(TypeTag::List), \
|
| 30 | {.len_ = N, .capacity_ = N, .slab_ = &_slab_##name.obj}}; \
|
| 31 | List<T>* name = reinterpret_cast<List<T>*>(&_list_##name.obj);
|
| 32 |
|
| 33 | template <typename T>
|
| 34 | class List {
|
| 35 | public:
|
| 36 | List() : len_(0), capacity_(0), slab_(nullptr) {
|
| 37 | }
|
| 38 |
|
| 39 | // Implements L[i]
|
| 40 | T at(int i);
|
| 41 |
|
| 42 | // returns index of the element
|
| 43 | int index(T element);
|
| 44 |
|
| 45 | // Implements L[i] = item
|
| 46 | void set(int i, T item);
|
| 47 |
|
| 48 | // L[begin:]
|
| 49 | List* slice(int begin);
|
| 50 |
|
| 51 | // L[begin:end]
|
| 52 | List* slice(int begin, int end);
|
| 53 |
|
| 54 | // Should we have a separate API that doesn't return it?
|
| 55 | // https://stackoverflow.com/questions/12600330/pop-back-return-value
|
| 56 | T pop();
|
| 57 |
|
| 58 | // Used in osh/word_parse.py to remove from front
|
| 59 | T pop(int i);
|
| 60 |
|
| 61 | // Remove the first occourence of x from the list.
|
| 62 | void remove(T x);
|
| 63 |
|
| 64 | void clear();
|
| 65 |
|
| 66 | // Used in osh/string_ops.py
|
| 67 | void reverse();
|
| 68 |
|
| 69 | // Templated function
|
| 70 | void sort();
|
| 71 |
|
| 72 | // Ensure that there's space for at LEAST this many items
|
| 73 | void reserve(int num_desired);
|
| 74 |
|
| 75 | // Append a single element to this list.
|
| 76 | void append(T item);
|
| 77 |
|
| 78 | // Extend this list with multiple elements.
|
| 79 | void extend(List<T>* other);
|
| 80 |
|
| 81 | static constexpr ObjHeader obj_header() {
|
| 82 | return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
|
| 83 | }
|
| 84 |
|
| 85 | int len_; // number of entries
|
| 86 | int capacity_; // max entries before resizing
|
| 87 |
|
| 88 | // The container may be resized, so this field isn't in-line.
|
| 89 | Slab<T>* slab_;
|
| 90 |
|
| 91 | // A list has one Slab pointer which we need to follow.
|
| 92 | static constexpr uint32_t field_mask() {
|
| 93 | return maskbit(offsetof(List, slab_));
|
| 94 | }
|
| 95 |
|
| 96 | DISALLOW_COPY_AND_ASSIGN(List)
|
| 97 |
|
| 98 | static_assert(sizeof(ObjHeader) % sizeof(T) == 0,
|
| 99 | "ObjHeader size should be multiple of item size");
|
| 100 | static constexpr int kHeaderFudge = sizeof(ObjHeader) / sizeof(T);
|
| 101 |
|
| 102 | #if 0
|
| 103 | // 24-byte pool comes from very common List header, and Token
|
| 104 | static constexpr int kPoolBytes1 = 24 - sizeof(ObjHeader);
|
| 105 | static_assert(kPoolBytes1 % sizeof(T) == 0,
|
| 106 | "An integral number of items should fit in first pool");
|
| 107 | static constexpr int kNumItems1 = kPoolBytes1 / sizeof(T);
|
| 108 | #endif
|
| 109 |
|
| 110 | // Matches mark_sweep_heap.h
|
| 111 | static constexpr int kPoolBytes2 = 48 - sizeof(ObjHeader);
|
| 112 | static_assert(kPoolBytes2 % sizeof(T) == 0,
|
| 113 | "An integral number of items should fit in second pool");
|
| 114 | static constexpr int kNumItems2 = kPoolBytes2 / sizeof(T);
|
| 115 |
|
| 116 | #if 0
|
| 117 | static constexpr int kMinBytes2 = 128 - sizeof(ObjHeader);
|
| 118 | static_assert(kMinBytes2 % sizeof(T) == 0,
|
| 119 | "An integral number of items should fit");
|
| 120 | static constexpr int kMinItems2 = kMinBytes2 / sizeof(T);
|
| 121 | #endif
|
| 122 |
|
| 123 | // Given the number of items desired, return the number items we should
|
| 124 | // reserve room for, according to our growth policy.
|
| 125 | int HowManyItems(int num_desired) {
|
| 126 | // Using the 24-byte pool leads to too much GC of tiny slab objects! So
|
| 127 | // just use the larger 48 byte pool.
|
| 128 | #if 0
|
| 129 | if (num_desired <= kNumItems1) { // use full cell in pool 1
|
| 130 | return kNumItems1;
|
| 131 | }
|
| 132 | #endif
|
| 133 | if (num_desired <= kNumItems2) { // use full cell in pool 2
|
| 134 | return kNumItems2;
|
| 135 | }
|
| 136 | #if 0
|
| 137 | if (num_desired <= kMinItems2) { // 48 -> 128, not 48 -> 64
|
| 138 | return kMinItems2;
|
| 139 | }
|
| 140 | #endif
|
| 141 |
|
| 142 | // Make sure the total allocation is a power of 2. TODO: consider using
|
| 143 | // slightly less than power of 2, to account for malloc() headers, and
|
| 144 | // reduce fragmentation.
|
| 145 | // Example:
|
| 146 | // - ask for 11 integers
|
| 147 | // - round up 11+2 == 13 up to 16 items
|
| 148 | // - return 14 items
|
| 149 | // - 14 integers is 56 bytes, plus 8 byte GC header => 64 byte alloc.
|
| 150 | return RoundUp(num_desired + kHeaderFudge) - kHeaderFudge;
|
| 151 | }
|
| 152 | };
|
| 153 |
|
| 154 | // "Constructors" as free functions since we can't allocate within a
|
| 155 | // constructor. Allocation may cause garbage collection, which interferes with
|
| 156 | // placement new.
|
| 157 |
|
| 158 | // This is not really necessary, only syntactic sugar.
|
| 159 | template <typename T>
|
| 160 | List<T>* NewList() {
|
| 161 | return Alloc<List<T>>();
|
| 162 | }
|
| 163 |
|
| 164 | // Literal ['foo', 'bar']
|
| 165 | // This seems to allow better template argument type deduction than a
|
| 166 | // constructor.
|
| 167 | template <typename T>
|
| 168 | List<T>* NewList(std::initializer_list<T> init) {
|
| 169 | auto self = Alloc<List<T>>();
|
| 170 |
|
| 171 | int n = init.size();
|
| 172 | self->reserve(n);
|
| 173 |
|
| 174 | int i = 0;
|
| 175 | for (auto item : init) {
|
| 176 | self->set(i, item);
|
| 177 | ++i;
|
| 178 | }
|
| 179 | self->len_ = n;
|
| 180 | return self;
|
| 181 | }
|
| 182 |
|
| 183 | // ['foo'] * 3
|
| 184 | template <typename T>
|
| 185 | List<T>* NewList(T item, int times) {
|
| 186 | auto self = Alloc<List<T>>();
|
| 187 |
|
| 188 | self->reserve(times);
|
| 189 | self->len_ = times;
|
| 190 | for (int i = 0; i < times; ++i) {
|
| 191 | self->set(i, item);
|
| 192 | }
|
| 193 | return self;
|
| 194 | }
|
| 195 |
|
| 196 | template <typename T>
|
| 197 | void List<T>::append(T item) {
|
| 198 | reserve(len_ + 1);
|
| 199 | slab_->items_[len_] = item;
|
| 200 | ++len_;
|
| 201 | }
|
| 202 |
|
| 203 | template <typename T>
|
| 204 | int len(const List<T>* L) {
|
| 205 | return L->len_;
|
| 206 | }
|
| 207 |
|
| 208 | template <typename T>
|
| 209 | List<T>* list_repeat(T item, int times);
|
| 210 |
|
| 211 | template <typename T>
|
| 212 | inline bool list_contains(List<T>* haystack, T needle);
|
| 213 |
|
| 214 | template <typename K, typename V>
|
| 215 | class Dict; // forward decl
|
| 216 |
|
| 217 | template <typename V>
|
| 218 | List<BigStr*>* sorted(Dict<BigStr*, V>* d);
|
| 219 |
|
| 220 | template <typename T>
|
| 221 | List<T>* sorted(List<T>* l);
|
| 222 |
|
| 223 | // L[begin:]
|
| 224 | template <typename T>
|
| 225 | List<T>* List<T>::slice(int begin) {
|
| 226 | return slice(begin, len_);
|
| 227 | }
|
| 228 |
|
| 229 | // L[begin:end]
|
| 230 | template <typename T>
|
| 231 | List<T>* List<T>::slice(int begin, int end) {
|
| 232 | SLICE_ADJUST(begin, end, len_);
|
| 233 |
|
| 234 | DCHECK(0 <= begin && begin <= len_);
|
| 235 | DCHECK(0 <= end && end <= len_);
|
| 236 |
|
| 237 | int new_len = end - begin;
|
| 238 | DCHECK(0 <= new_len && new_len <= len_);
|
| 239 |
|
| 240 | List<T>* result = NewList<T>();
|
| 241 | result->reserve(new_len);
|
| 242 |
|
| 243 | // Faster than append() in a loop
|
| 244 | memcpy(result->slab_->items_, slab_->items_ + begin, new_len * sizeof(T));
|
| 245 | result->len_ = new_len;
|
| 246 |
|
| 247 | return result;
|
| 248 | }
|
| 249 |
|
| 250 | // Ensure that there's space for a number of items
|
| 251 | template <typename T>
|
| 252 | void List<T>::reserve(int num_desired) {
|
| 253 | // log("reserve capacity = %d, n = %d", capacity_, n);
|
| 254 |
|
| 255 | // Don't do anything if there's already enough space.
|
| 256 | if (capacity_ >= num_desired) {
|
| 257 | return;
|
| 258 | }
|
| 259 |
|
| 260 | // Slabs should be a total of 2^N bytes. kCapacityAdjust is the number of
|
| 261 | // items that the 8 byte header takes up: 1 for List<T*>, and 2 for
|
| 262 | // List<int>.
|
| 263 | //
|
| 264 | // Example: the user reserves space for 3 integers. The minimum number of
|
| 265 | // items would be 5, which is rounded up to 8. Subtract 2 again, giving 6,
|
| 266 | // which leads to 8 + 6*4 = 32 byte Slab.
|
| 267 |
|
| 268 | capacity_ = HowManyItems(num_desired);
|
| 269 | auto new_slab = NewSlab<T>(capacity_);
|
| 270 |
|
| 271 | if (len_ > 0) {
|
| 272 | // log("Copying %d bytes", len_ * sizeof(T));
|
| 273 | memcpy(new_slab->items_, slab_->items_, len_ * sizeof(T));
|
| 274 | }
|
| 275 | slab_ = new_slab;
|
| 276 | }
|
| 277 |
|
| 278 | // Implements L[i] = item
|
| 279 | template <typename T>
|
| 280 | void List<T>::set(int i, T item) {
|
| 281 | if (i < 0) {
|
| 282 | i = len_ + i;
|
| 283 | }
|
| 284 |
|
| 285 | DCHECK(i >= 0);
|
| 286 | DCHECK(i < capacity_);
|
| 287 |
|
| 288 | slab_->items_[i] = item;
|
| 289 | }
|
| 290 |
|
| 291 | // Implements L[i]
|
| 292 | template <typename T>
|
| 293 | T List<T>::at(int i) {
|
| 294 | if (i < 0) {
|
| 295 | int j = len_ + i;
|
| 296 | if (j >= len_ || j < 0) {
|
| 297 | throw Alloc<IndexError>();
|
| 298 | }
|
| 299 | return slab_->items_[j];
|
| 300 | }
|
| 301 |
|
| 302 | if (i >= len_ || i < 0) {
|
| 303 | throw Alloc<IndexError>();
|
| 304 | }
|
| 305 | return slab_->items_[i];
|
| 306 | }
|
| 307 |
|
| 308 | // L.index(i) -- Python method
|
| 309 | template <typename T>
|
| 310 | int List<T>::index(T value) {
|
| 311 | int element_count = len(this);
|
| 312 | for (int i = 0; i < element_count; i++) {
|
| 313 | if (are_equal(slab_->items_[i], value)) {
|
| 314 | return i;
|
| 315 | }
|
| 316 | }
|
| 317 | throw Alloc<ValueError>();
|
| 318 | }
|
| 319 |
|
| 320 | // Should we have a separate API that doesn't return it?
|
| 321 | // https://stackoverflow.com/questions/12600330/pop-back-return-value
|
| 322 | template <typename T>
|
| 323 | T List<T>::pop() {
|
| 324 | if (len_ == 0) {
|
| 325 | throw Alloc<IndexError>();
|
| 326 | }
|
| 327 | len_--;
|
| 328 | T result = slab_->items_[len_];
|
| 329 | slab_->items_[len_] = 0; // zero for GC scan
|
| 330 | return result;
|
| 331 | }
|
| 332 |
|
| 333 | // Used in osh/word_parse.py to remove from front
|
| 334 | template <typename T>
|
| 335 | T List<T>::pop(int i) {
|
| 336 | if (len_ < i) {
|
| 337 | throw Alloc<IndexError>();
|
| 338 | }
|
| 339 |
|
| 340 | T result = at(i);
|
| 341 | len_--;
|
| 342 |
|
| 343 | // Shift everything by one
|
| 344 | memmove(slab_->items_ + i, slab_->items_ + (i + 1), len_ * sizeof(T));
|
| 345 |
|
| 346 | /*
|
| 347 | for (int j = 0; j < len_; j++) {
|
| 348 | slab_->items_[j] = slab_->items_[j+1];
|
| 349 | }
|
| 350 | */
|
| 351 |
|
| 352 | slab_->items_[len_] = 0; // zero for GC scan
|
| 353 | return result;
|
| 354 | }
|
| 355 |
|
| 356 | template <typename T>
|
| 357 | void List<T>::remove(T x) {
|
| 358 | int idx = this->index(x);
|
| 359 | this->pop(idx); // unused
|
| 360 | }
|
| 361 |
|
| 362 | template <typename T>
|
| 363 | void List<T>::clear() {
|
| 364 | if (slab_) {
|
| 365 | memset(slab_->items_, 0, len_ * sizeof(T)); // zero for GC scan
|
| 366 | }
|
| 367 | len_ = 0;
|
| 368 | }
|
| 369 |
|
| 370 | // Used in osh/string_ops.py
|
| 371 | template <typename T>
|
| 372 | void List<T>::reverse() {
|
| 373 | for (int i = 0; i < len_ / 2; ++i) {
|
| 374 | // log("swapping %d and %d", i, n-i);
|
| 375 | T tmp = slab_->items_[i];
|
| 376 | int j = len_ - 1 - i;
|
| 377 | slab_->items_[i] = slab_->items_[j];
|
| 378 | slab_->items_[j] = tmp;
|
| 379 | }
|
| 380 | }
|
| 381 |
|
| 382 | // Extend this list with multiple elements.
|
| 383 | template <typename T>
|
| 384 | void List<T>::extend(List<T>* other) {
|
| 385 | int n = other->len_;
|
| 386 | int new_len = len_ + n;
|
| 387 | reserve(new_len);
|
| 388 |
|
| 389 | for (int i = 0; i < n; ++i) {
|
| 390 | set(len_ + i, other->slab_->items_[i]);
|
| 391 | }
|
| 392 | len_ = new_len;
|
| 393 | }
|
| 394 |
|
| 395 | inline bool _cmp(BigStr* a, BigStr* b) {
|
| 396 | return mylib::str_cmp(a, b) < 0;
|
| 397 | }
|
| 398 |
|
| 399 | template <typename T>
|
| 400 | void List<T>::sort() {
|
| 401 | std::sort(slab_->items_, slab_->items_ + len_, _cmp);
|
| 402 | }
|
| 403 |
|
| 404 | // TODO: mycpp can just generate the constructor instead?
|
| 405 | // e.g. [None] * 3
|
| 406 | template <typename T>
|
| 407 | List<T>* list_repeat(T item, int times) {
|
| 408 | return NewList<T>(item, times);
|
| 409 | }
|
| 410 |
|
| 411 | // e.g. 'a' in ['a', 'b', 'c']
|
| 412 | template <typename T>
|
| 413 | inline bool list_contains(List<T>* haystack, T needle) {
|
| 414 | int n = len(haystack);
|
| 415 | for (int i = 0; i < n; ++i) {
|
| 416 | if (are_equal(haystack->at(i), needle)) {
|
| 417 | return true;
|
| 418 | }
|
| 419 | }
|
| 420 | return false;
|
| 421 | }
|
| 422 |
|
| 423 | template <typename V>
|
| 424 | List<BigStr*>* sorted(Dict<BigStr*, V>* d) {
|
| 425 | auto keys = d->keys();
|
| 426 | keys->sort();
|
| 427 | return keys;
|
| 428 | }
|
| 429 |
|
| 430 | template <typename T>
|
| 431 | List<T>* sorted(List<T>* l) {
|
| 432 | auto ret = list(l);
|
| 433 | ret->sort();
|
| 434 | return ret;
|
| 435 | }
|
| 436 |
|
| 437 | // list(L) copies the list
|
| 438 | template <typename T>
|
| 439 | List<T>* list(List<T>* other) {
|
| 440 | auto result = NewList<T>();
|
| 441 | result->extend(other);
|
| 442 | return result;
|
| 443 | }
|
| 444 |
|
| 445 | template <class T>
|
| 446 | class ListIter {
|
| 447 | public:
|
| 448 | explicit ListIter(List<T>* L) : L_(L), i_(0) {
|
| 449 | // Cheney only: L_ could be moved during iteration.
|
| 450 | // gHeap.PushRoot(reinterpret_cast<RawObject**>(&L_));
|
| 451 | }
|
| 452 |
|
| 453 | ~ListIter() {
|
| 454 | // gHeap.PopRoot();
|
| 455 | }
|
| 456 | void Next() {
|
| 457 | i_++;
|
| 458 | }
|
| 459 | bool Done() {
|
| 460 | // "unsigned size_t was a mistake"
|
| 461 | return i_ >= static_cast<int>(L_->len_);
|
| 462 | }
|
| 463 | T Value() {
|
| 464 | return L_->slab_->items_[i_];
|
| 465 | }
|
| 466 | T iterNext() {
|
| 467 | if (Done()) {
|
| 468 | throw Alloc<StopIteration>();
|
| 469 | }
|
| 470 | T ret = L_->slab_->items_[i_];
|
| 471 | Next();
|
| 472 | return ret;
|
| 473 | }
|
| 474 |
|
| 475 | // only for use with generators
|
| 476 | List<T>* GetList() {
|
| 477 | return L_;
|
| 478 | }
|
| 479 |
|
| 480 | private:
|
| 481 | List<T>* L_;
|
| 482 | int i_;
|
| 483 | };
|
| 484 |
|
| 485 | // list(it) returns the iterator's backing list
|
| 486 | template <typename T>
|
| 487 | List<T>* list(ListIter<T> it) {
|
| 488 | return list(it.GetList());
|
| 489 | }
|
| 490 |
|
| 491 | // TODO: Does using pointers rather than indices make this more efficient?
|
| 492 | template <class T>
|
| 493 | class ReverseListIter {
|
| 494 | public:
|
| 495 | explicit ReverseListIter(List<T>* L) : L_(L), i_(L_->len_ - 1) {
|
| 496 | }
|
| 497 | void Next() {
|
| 498 | i_--;
|
| 499 | }
|
| 500 | bool Done() {
|
| 501 | return i_ < 0;
|
| 502 | }
|
| 503 | T Value() {
|
| 504 | return L_->slab_->items_[i_];
|
| 505 | }
|
| 506 |
|
| 507 | private:
|
| 508 | List<T>* L_;
|
| 509 | int i_;
|
| 510 | };
|
| 511 |
|
| 512 | int max(List<int>* elems);
|
| 513 |
|
| 514 | #endif // MYCPP_GC_LIST_H
|