| 1 | #!/usr/bin/env python2
|
| 2 | from __future__ import print_function
|
| 3 | """
|
| 4 | Usage:
|
| 5 | csv2html.py foo.csv
|
| 6 |
|
| 7 | Note: it's run with python2 AND python3
|
| 8 |
|
| 9 | Attempts to read foo_schema.csv. If not it assumes everything is a string.
|
| 10 |
|
| 11 | Things it handles:
|
| 12 |
|
| 13 | - table-sort.js integration <colgroup>
|
| 14 | - <table id="foo"> for making columns sortable
|
| 15 | - for choosing the comparator to use!
|
| 16 | - for highlighting on sort
|
| 17 | - static / visual
|
| 18 | - Aligning right for number, left for strings.
|
| 19 | - highlighting NA numbers in red (only if it's considered a number)
|
| 20 | - formatting numbers to a certain precision
|
| 21 | - or displaying them as percentages
|
| 22 | - changing CSV headers like 'elapsed_ms' to 'elapsed ms'
|
| 23 | - Accepting a column with a '_HREF' suffix to make an HTML link
|
| 24 | - We could have something like type:
|
| 25 | string/anchor:shell-id
|
| 26 | string/href:shell-id
|
| 27 | - But the simple _HREF suffix is simpler. Easier to write R code for.
|
| 28 |
|
| 29 | Implementation notes:
|
| 30 | - To align right: need a class on every cell, e.g. "num". Can't do it through
|
| 31 | <colgroup>.
|
| 32 | - To color, can use <colgroup>. table-sort.js needs this.
|
| 33 |
|
| 34 | TODO:
|
| 35 | Does it make sense to implement <rowspan> and <colspan> ? It's nice for
|
| 36 | visualization.
|
| 37 | """
|
| 38 |
|
| 39 | try:
|
| 40 | import html
|
| 41 | except ImportError:
|
| 42 | import cgi as html
|
| 43 | import csv
|
| 44 | import optparse
|
| 45 | import os
|
| 46 | import re
|
| 47 | import sys
|
| 48 |
|
| 49 |
|
| 50 | def log(msg, *args):
|
| 51 | if args:
|
| 52 | msg = msg % args
|
| 53 | print(msg, file=sys.stderr)
|
| 54 |
|
| 55 |
|
| 56 | class NullSchema:
|
| 57 | def VerifyColumnNames(self, col_names):
|
| 58 | pass
|
| 59 |
|
| 60 | def IsNumeric(self, col_name):
|
| 61 | return False
|
| 62 |
|
| 63 | def ColumnIndexIsNumeric(self, index):
|
| 64 | return False
|
| 65 |
|
| 66 | def ColumnIndexIsInteger(self, index):
|
| 67 | return False
|
| 68 |
|
| 69 | def ColumnIndexHasHref(self, index):
|
| 70 | return False
|
| 71 |
|
| 72 | def HasCssClassColumn(self):
|
| 73 | return False
|
| 74 |
|
| 75 |
|
| 76 | INTEGER_TYPES = ('integer',)
|
| 77 |
|
| 78 | # for sorting, right-justification
|
| 79 | # Note: added 'float' as alias for 'double' to be compatible with TSV8
|
| 80 | NUMERIC_TYPES = ('double', 'float', 'number') + INTEGER_TYPES
|
| 81 |
|
| 82 |
|
| 83 | class Schema:
|
| 84 | def __init__(self, rows):
|
| 85 | schema_col_names = rows[0]
|
| 86 | assert 'column_name' in schema_col_names, schema_col_names
|
| 87 | assert 'type' in schema_col_names, schema_col_names
|
| 88 |
|
| 89 | # Schema columns
|
| 90 | s_cols = {}
|
| 91 | s_cols['column_name'] = []
|
| 92 | s_cols['type'] = []
|
| 93 | s_cols['precision'] = []
|
| 94 | s_cols['strftime'] = []
|
| 95 | for row in rows[1:]:
|
| 96 | for i, cell in enumerate(row):
|
| 97 | name = schema_col_names[i]
|
| 98 | s_cols[name].append(cell)
|
| 99 |
|
| 100 | self.type_lookup = dict(
|
| 101 | (name, t) for (name, t) in
|
| 102 | zip(s_cols['column_name'], s_cols['type']))
|
| 103 |
|
| 104 | # NOTE: it's OK if precision is missing.
|
| 105 | self.precision_lookup = dict(
|
| 106 | (name, p) for (name, p) in
|
| 107 | zip(s_cols['column_name'], s_cols['precision']))
|
| 108 |
|
| 109 | self.strftime_lookup = dict(
|
| 110 | (name, p) for (name, p) in
|
| 111 | zip(s_cols['column_name'], s_cols['strftime']))
|
| 112 |
|
| 113 | #log('SCHEMA %s', schema_col_names)
|
| 114 | #log('type_lookup %s', self.type_lookup)
|
| 115 | #log('precision_lookup %s', self.precision_lookup)
|
| 116 |
|
| 117 | self.col_names = None
|
| 118 | self.col_has_href = None
|
| 119 |
|
| 120 | def VerifyColumnNames(self, col_names):
|
| 121 | """Assert that the column names we got are all in the schema."""
|
| 122 | if 0:
|
| 123 | for name in col_names:
|
| 124 | log('%s : %s', name, self.type_lookup[name])
|
| 125 |
|
| 126 | n = len(col_names)
|
| 127 | self.col_has_href = [False] * n
|
| 128 | for i in range(n-1):
|
| 129 | this_name, next_name= col_names[i], col_names[i+1]
|
| 130 | if this_name + '_HREF' == next_name:
|
| 131 | self.col_has_href[i] = True
|
| 132 |
|
| 133 | #log('href: %s', self.col_has_href)
|
| 134 | self.col_names = col_names
|
| 135 |
|
| 136 | def IsNumeric(self, col_name):
|
| 137 | return self.type_lookup[col_name] in NUMERIC_TYPES
|
| 138 |
|
| 139 | def ColumnIndexIsNumeric(self, index):
|
| 140 | col_name = self.col_names[index]
|
| 141 | return self.IsNumeric(col_name)
|
| 142 |
|
| 143 | def ColumnIndexIsInteger(self, index):
|
| 144 | col_name = self.col_names[index]
|
| 145 | return self.type_lookup[col_name] in INTEGER_TYPES
|
| 146 |
|
| 147 | def ColumnIndexHasHref(self, index):
|
| 148 | """
|
| 149 | Is the next one?
|
| 150 | """
|
| 151 | return self.col_has_href[index]
|
| 152 |
|
| 153 | def ColumnPrecision(self, index):
|
| 154 | col_name = self.col_names[index]
|
| 155 | return self.precision_lookup.get(col_name, 1) # default is arbitrary
|
| 156 |
|
| 157 | def HasStrfTime(self, col_name):
|
| 158 | # An explicit - means "no entry"
|
| 159 | return self.strftime_lookup.get(col_name, '-') != '-'
|
| 160 |
|
| 161 | def ColumnStrftime(self, index):
|
| 162 | col_name = self.col_names[index]
|
| 163 | return self.strftime_lookup.get(col_name, '-')
|
| 164 |
|
| 165 | def HasCssClassColumn(self):
|
| 166 | # It has to be the first column
|
| 167 | return self.col_names[0] == 'ROW_CSS_CLASS'
|
| 168 |
|
| 169 |
|
| 170 | def PrintRow(row, schema, css_class_pattern):
|
| 171 | """Print a CSV row as HTML, using the given formatting.
|
| 172 |
|
| 173 | Returns:
|
| 174 | An array of booleans indicating whether each cell is a number.
|
| 175 | """
|
| 176 | # TODO: cache this computation
|
| 177 | if css_class_pattern:
|
| 178 | row_class_pat, r = css_class_pattern.split(None, 2)
|
| 179 | cell_regex = re.compile(r)
|
| 180 | else:
|
| 181 | row_class_pat = None
|
| 182 | cell_regex = None
|
| 183 |
|
| 184 | i = 0
|
| 185 | n = len(row)
|
| 186 |
|
| 187 | row_classes = []
|
| 188 |
|
| 189 | if schema.HasCssClassColumn():
|
| 190 | i += 1 # Don't print this row
|
| 191 | # It's a CSS class
|
| 192 | row_classes.append(row[0])
|
| 193 |
|
| 194 | if cell_regex:
|
| 195 | for cell in row:
|
| 196 | if cell_regex.search(cell):
|
| 197 | row_classes.append(row_class_pat)
|
| 198 | break
|
| 199 |
|
| 200 | h = ' class="%s"' % ' '.join(row_classes) if row_classes else ''
|
| 201 | print(' <tr%s>' % h)
|
| 202 |
|
| 203 | while True:
|
| 204 | if i == n:
|
| 205 | break
|
| 206 |
|
| 207 | cell = row[i]
|
| 208 | css_classes = []
|
| 209 | cell_str = cell # by default, we don't touch it
|
| 210 |
|
| 211 | if schema.ColumnIndexIsInteger(i):
|
| 212 | css_classes.append('num') # right justify
|
| 213 |
|
| 214 | try:
|
| 215 | cell_int = int(cell)
|
| 216 | except ValueError:
|
| 217 | pass # NA?
|
| 218 | else:
|
| 219 | # commas AND floating point
|
| 220 | cell_str = '{:,}'.format(cell_int)
|
| 221 |
|
| 222 | # Look up by index now?
|
| 223 | elif schema.ColumnIndexIsNumeric(i):
|
| 224 | css_classes.append('num') # right justify
|
| 225 |
|
| 226 | try:
|
| 227 | cell_float = float(cell)
|
| 228 | except ValueError:
|
| 229 | pass # NA
|
| 230 | else:
|
| 231 | # Floats can also be timestamps
|
| 232 | fmt = schema.ColumnStrftime(i)
|
| 233 | if fmt not in ('-', ''):
|
| 234 | from datetime import datetime
|
| 235 | t = datetime.fromtimestamp(cell_float)
|
| 236 | if fmt == 'iso':
|
| 237 | cell_str = t.isoformat()
|
| 238 | else:
|
| 239 | cell_str = t.strftime(fmt)
|
| 240 | else:
|
| 241 | # commas AND floating point to a given precision
|
| 242 | # default precision is 1
|
| 243 | precision = schema.ColumnPrecision(i)
|
| 244 | cell_str = '{0:,.{precision}f}'.format(cell_float, precision=precision)
|
| 245 |
|
| 246 | # Percentage
|
| 247 | #cell_str = '{:.1f}%'.format(cell_float * 100)
|
| 248 |
|
| 249 | # Special CSS class for R NA values.
|
| 250 | if cell.strip() == 'NA':
|
| 251 | css_classes.append('na') # make it red
|
| 252 |
|
| 253 | if css_classes:
|
| 254 | print(' <td class="{}">'.format(' '.join(css_classes)), end=' ')
|
| 255 | else:
|
| 256 | print(' <td>', end=' ')
|
| 257 |
|
| 258 | s = html.escape(cell_str)
|
| 259 | # If it's an _HREF, advance to the next column, and mutate 's'.
|
| 260 | if schema.ColumnIndexHasHref(i):
|
| 261 | i += 1
|
| 262 | href = row[i]
|
| 263 | if href:
|
| 264 | s = '<a href="%s">%s</a>' % (html.escape(href), html.escape(cell_str))
|
| 265 |
|
| 266 | print(s, end=' ')
|
| 267 | print('</td>')
|
| 268 |
|
| 269 | i += 1
|
| 270 |
|
| 271 | print(' </tr>')
|
| 272 |
|
| 273 |
|
| 274 | def PrintColGroup(col_names, schema):
|
| 275 | """Print HTML colgroup element, used for JavaScript sorting."""
|
| 276 | print(' <colgroup>')
|
| 277 | for i, col in enumerate(col_names):
|
| 278 | if i == 0 and schema.HasCssClassColumn():
|
| 279 | continue
|
| 280 | if col.endswith('_HREF'):
|
| 281 | continue
|
| 282 |
|
| 283 | # CSS class is used for sorting
|
| 284 | if schema.IsNumeric(col) and not schema.HasStrfTime(col):
|
| 285 | css_class = 'number'
|
| 286 | else:
|
| 287 | css_class = 'case-insensitive'
|
| 288 |
|
| 289 | # NOTE: id is a comment only; not used
|
| 290 | print(' <col id="{}" type="{}" />'.format(col, css_class))
|
| 291 | print(' </colgroup>')
|
| 292 |
|
| 293 |
|
| 294 | def PrintTable(css_id, schema, col_names, rows, opts):
|
| 295 | print('<table id="%s">' % css_id)
|
| 296 | print(' <thead>')
|
| 297 | print(' <tr>')
|
| 298 | for i, col in enumerate(col_names):
|
| 299 | if i == 0 and schema.HasCssClassColumn():
|
| 300 | continue
|
| 301 | if col.endswith('_HREF'):
|
| 302 | continue
|
| 303 |
|
| 304 | heading_str = html.escape(col.replace('_', ' '))
|
| 305 | if schema.ColumnIndexIsNumeric(i):
|
| 306 | print(' <td class="num">%s</td>' % heading_str)
|
| 307 | else:
|
| 308 | print(' <td>%s</td>' % heading_str)
|
| 309 | print(' </tr>')
|
| 310 |
|
| 311 | for i in range(opts.thead_offset):
|
| 312 | PrintRow(rows[i], schema, opts.css_class_pattern)
|
| 313 |
|
| 314 | print(' </thead>')
|
| 315 |
|
| 316 | print(' <tbody>')
|
| 317 | for row in rows[opts.thead_offset:]:
|
| 318 | PrintRow(row, schema, opts.css_class_pattern)
|
| 319 | print(' </tbody>')
|
| 320 |
|
| 321 | PrintColGroup(col_names, schema)
|
| 322 |
|
| 323 | print('</table>')
|
| 324 |
|
| 325 |
|
| 326 | def ReadFile(f, tsv=False):
|
| 327 | """Read the CSV file, returning the column names and rows."""
|
| 328 |
|
| 329 | if tsv:
|
| 330 | c = csv.reader(f, delimiter='\t', doublequote=False,
|
| 331 | quoting=csv.QUOTE_NONE)
|
| 332 | else:
|
| 333 | c = csv.reader(f)
|
| 334 |
|
| 335 | # The first row of the CSV is assumed to be a header. The rest are data.
|
| 336 | col_names = []
|
| 337 | rows = []
|
| 338 | for i, row in enumerate(c):
|
| 339 | if i == 0:
|
| 340 | col_names = row
|
| 341 | continue
|
| 342 | rows.append(row)
|
| 343 | return col_names, rows
|
| 344 |
|
| 345 |
|
| 346 | def CreateOptionsParser():
|
| 347 | p = optparse.OptionParser()
|
| 348 |
|
| 349 | # We are taking a path, and not using stdin, because we read it twice.
|
| 350 | p.add_option(
|
| 351 | '--schema', dest='schema', metavar="PATH", type='str',
|
| 352 | help='Path to the schema.')
|
| 353 | p.add_option(
|
| 354 | '--tsv', dest='tsv', default=False, action='store_true',
|
| 355 | help='Read input in TSV format')
|
| 356 | p.add_option(
|
| 357 | '--css-class-pattern', dest='css_class_pattern', type='str',
|
| 358 | help='A string of the form CSS_CLASS:PATTERN. If the cell contents '
|
| 359 | 'matches the pattern, then apply the given CSS class. '
|
| 360 | 'Example: osh:^osh')
|
| 361 | # TODO: Might want --tfoot-offset from the bottom too? Default 0
|
| 362 | p.add_option(
|
| 363 | '--thead-offset', dest='thead_offset', default=0, type='int',
|
| 364 | help='Put more rows in the data in the thead section')
|
| 365 | return p
|
| 366 |
|
| 367 |
|
| 368 | def main(argv):
|
| 369 | (opts, argv) = CreateOptionsParser().parse_args(argv[1:])
|
| 370 |
|
| 371 | try:
|
| 372 | csv_path = argv[0]
|
| 373 | except IndexError:
|
| 374 | raise RuntimeError('Expected CSV filename.')
|
| 375 |
|
| 376 | schema = None
|
| 377 | if opts.schema:
|
| 378 | try:
|
| 379 | schema_f = open(opts.schema)
|
| 380 | except IOError as e:
|
| 381 | raise RuntimeError('Error opening schema: %s' % e)
|
| 382 | else:
|
| 383 | if csv_path.endswith('.csv'):
|
| 384 | schema_path = csv_path.replace('.csv', '.schema.csv')
|
| 385 | elif csv_path.endswith('.tsv'):
|
| 386 | schema_path = csv_path.replace('.tsv', '.schema.tsv')
|
| 387 | else:
|
| 388 | raise AssertionError(csv_path)
|
| 389 |
|
| 390 | #log('schema path %s', schema_path)
|
| 391 | try:
|
| 392 | schema_f = open(schema_path)
|
| 393 | except IOError:
|
| 394 | schema_f = None # allowed to have no schema
|
| 395 |
|
| 396 | if schema_f:
|
| 397 | if opts.tsv:
|
| 398 | r = csv.reader(schema_f, delimiter='\t', doublequote=False,
|
| 399 | quoting=csv.QUOTE_NONE)
|
| 400 | else:
|
| 401 | r = csv.reader(schema_f)
|
| 402 |
|
| 403 | schema = Schema(list(r))
|
| 404 | else:
|
| 405 | schema = NullSchema()
|
| 406 | # Default string schema
|
| 407 |
|
| 408 | #log('schema %s', schema)
|
| 409 |
|
| 410 | with open(csv_path) as f:
|
| 411 | col_names, rows = ReadFile(f, opts.tsv)
|
| 412 |
|
| 413 | schema.VerifyColumnNames(col_names)
|
| 414 |
|
| 415 | filename = os.path.basename(csv_path)
|
| 416 | css_id, _ = os.path.splitext(filename)
|
| 417 | PrintTable(css_id, schema, col_names, rows, opts)
|
| 418 |
|
| 419 |
|
| 420 | if __name__ == '__main__':
|
| 421 | try:
|
| 422 | main(sys.argv)
|
| 423 | except RuntimeError as e:
|
| 424 | print('FATAL: %s' % e, file=sys.stderr)
|
| 425 | sys.exit(1)
|