| 1 | # -*- coding: utf-8 -*-
|
| 2 | #
|
| 3 | # Secret Labs' Regular Expression Engine
|
| 4 | #
|
| 5 | # convert template to internal format
|
| 6 | #
|
| 7 | # Copyright (c) 1997-2001 by Secret Labs AB. All rights reserved.
|
| 8 | #
|
| 9 | # See the sre.py file for information on usage and redistribution.
|
| 10 | #
|
| 11 |
|
| 12 | """Internal support module for sre"""
|
| 13 |
|
| 14 | import _sre, sys
|
| 15 | import sre_parse
|
| 16 | from sre_constants import *
|
| 17 |
|
| 18 | assert _sre.MAGIC == MAGIC, "SRE module mismatch"
|
| 19 |
|
| 20 | if _sre.CODESIZE == 2:
|
| 21 | MAXCODE = 65535
|
| 22 | else:
|
| 23 | MAXCODE = 0xFFFFFFFFL
|
| 24 |
|
| 25 | _LITERAL_CODES = set([LITERAL, NOT_LITERAL])
|
| 26 | _REPEATING_CODES = set([REPEAT, MIN_REPEAT, MAX_REPEAT])
|
| 27 | _SUCCESS_CODES = set([SUCCESS, FAILURE])
|
| 28 | _ASSERT_CODES = set([ASSERT, ASSERT_NOT])
|
| 29 |
|
| 30 | # Sets of lowercase characters which have the same uppercase.
|
| 31 | _equivalences = (
|
| 32 | # LATIN SMALL LETTER I, LATIN SMALL LETTER DOTLESS I
|
| 33 | (0x69, 0x131), # iı
|
| 34 | # LATIN SMALL LETTER S, LATIN SMALL LETTER LONG S
|
| 35 | (0x73, 0x17f), # sſ
|
| 36 | # MICRO SIGN, GREEK SMALL LETTER MU
|
| 37 | (0xb5, 0x3bc), # µμ
|
| 38 | # COMBINING GREEK YPOGEGRAMMENI, GREEK SMALL LETTER IOTA, GREEK PROSGEGRAMMENI
|
| 39 | (0x345, 0x3b9, 0x1fbe), # \u0345ιι
|
| 40 | # GREEK SMALL LETTER BETA, GREEK BETA SYMBOL
|
| 41 | (0x3b2, 0x3d0), # βϐ
|
| 42 | # GREEK SMALL LETTER EPSILON, GREEK LUNATE EPSILON SYMBOL
|
| 43 | (0x3b5, 0x3f5), # εϵ
|
| 44 | # GREEK SMALL LETTER THETA, GREEK THETA SYMBOL
|
| 45 | (0x3b8, 0x3d1), # θϑ
|
| 46 | # GREEK SMALL LETTER KAPPA, GREEK KAPPA SYMBOL
|
| 47 | (0x3ba, 0x3f0), # κϰ
|
| 48 | # GREEK SMALL LETTER PI, GREEK PI SYMBOL
|
| 49 | (0x3c0, 0x3d6), # πϖ
|
| 50 | # GREEK SMALL LETTER RHO, GREEK RHO SYMBOL
|
| 51 | (0x3c1, 0x3f1), # ρϱ
|
| 52 | # GREEK SMALL LETTER FINAL SIGMA, GREEK SMALL LETTER SIGMA
|
| 53 | (0x3c2, 0x3c3), # ςσ
|
| 54 | # GREEK SMALL LETTER PHI, GREEK PHI SYMBOL
|
| 55 | (0x3c6, 0x3d5), # φϕ
|
| 56 | # LATIN SMALL LETTER S WITH DOT ABOVE, LATIN SMALL LETTER LONG S WITH DOT ABOVE
|
| 57 | (0x1e61, 0x1e9b), # ṡẛ
|
| 58 | )
|
| 59 |
|
| 60 | # Maps the lowercase code to lowercase codes which have the same uppercase.
|
| 61 | _ignorecase_fixes = {i: tuple(j for j in t if i != j)
|
| 62 | for t in _equivalences for i in t}
|
| 63 |
|
| 64 | def _compile(code, pattern, flags):
|
| 65 | # internal: compile a (sub)pattern
|
| 66 | emit = code.append
|
| 67 | _len = len
|
| 68 | LITERAL_CODES = _LITERAL_CODES
|
| 69 | REPEATING_CODES = _REPEATING_CODES
|
| 70 | SUCCESS_CODES = _SUCCESS_CODES
|
| 71 | ASSERT_CODES = _ASSERT_CODES
|
| 72 | if (flags & SRE_FLAG_IGNORECASE and
|
| 73 | not (flags & SRE_FLAG_LOCALE) and
|
| 74 | flags & SRE_FLAG_UNICODE):
|
| 75 | fixes = _ignorecase_fixes
|
| 76 | else:
|
| 77 | fixes = None
|
| 78 | for op, av in pattern:
|
| 79 | if op in LITERAL_CODES:
|
| 80 | if flags & SRE_FLAG_IGNORECASE:
|
| 81 | lo = _sre.getlower(av, flags)
|
| 82 | if fixes and lo in fixes:
|
| 83 | emit(OPCODES[IN_IGNORE])
|
| 84 | skip = _len(code); emit(0)
|
| 85 | if op is NOT_LITERAL:
|
| 86 | emit(OPCODES[NEGATE])
|
| 87 | for k in (lo,) + fixes[lo]:
|
| 88 | emit(OPCODES[LITERAL])
|
| 89 | emit(k)
|
| 90 | emit(OPCODES[FAILURE])
|
| 91 | code[skip] = _len(code) - skip
|
| 92 | else:
|
| 93 | emit(OPCODES[OP_IGNORE[op]])
|
| 94 | emit(lo)
|
| 95 | else:
|
| 96 | emit(OPCODES[op])
|
| 97 | emit(av)
|
| 98 | elif op is IN:
|
| 99 | if flags & SRE_FLAG_IGNORECASE:
|
| 100 | emit(OPCODES[OP_IGNORE[op]])
|
| 101 | def fixup(literal, flags=flags):
|
| 102 | return _sre.getlower(literal, flags)
|
| 103 | else:
|
| 104 | emit(OPCODES[op])
|
| 105 | fixup = None
|
| 106 | skip = _len(code); emit(0)
|
| 107 | _compile_charset(av, flags, code, fixup, fixes)
|
| 108 | code[skip] = _len(code) - skip
|
| 109 | elif op is ANY:
|
| 110 | if flags & SRE_FLAG_DOTALL:
|
| 111 | emit(OPCODES[ANY_ALL])
|
| 112 | else:
|
| 113 | emit(OPCODES[ANY])
|
| 114 | elif op in REPEATING_CODES:
|
| 115 | if flags & SRE_FLAG_TEMPLATE:
|
| 116 | raise error, "internal: unsupported template operator"
|
| 117 | emit(OPCODES[REPEAT])
|
| 118 | skip = _len(code); emit(0)
|
| 119 | emit(av[0])
|
| 120 | emit(av[1])
|
| 121 | _compile(code, av[2], flags)
|
| 122 | emit(OPCODES[SUCCESS])
|
| 123 | code[skip] = _len(code) - skip
|
| 124 | elif _simple(av) and op is not REPEAT:
|
| 125 | if op is MAX_REPEAT:
|
| 126 | emit(OPCODES[REPEAT_ONE])
|
| 127 | else:
|
| 128 | emit(OPCODES[MIN_REPEAT_ONE])
|
| 129 | skip = _len(code); emit(0)
|
| 130 | emit(av[0])
|
| 131 | emit(av[1])
|
| 132 | _compile(code, av[2], flags)
|
| 133 | emit(OPCODES[SUCCESS])
|
| 134 | code[skip] = _len(code) - skip
|
| 135 | else:
|
| 136 | emit(OPCODES[REPEAT])
|
| 137 | skip = _len(code); emit(0)
|
| 138 | emit(av[0])
|
| 139 | emit(av[1])
|
| 140 | _compile(code, av[2], flags)
|
| 141 | code[skip] = _len(code) - skip
|
| 142 | if op is MAX_REPEAT:
|
| 143 | emit(OPCODES[MAX_UNTIL])
|
| 144 | else:
|
| 145 | emit(OPCODES[MIN_UNTIL])
|
| 146 | elif op is SUBPATTERN:
|
| 147 | if av[0]:
|
| 148 | emit(OPCODES[MARK])
|
| 149 | emit((av[0]-1)*2)
|
| 150 | # _compile_info(code, av[1], flags)
|
| 151 | _compile(code, av[1], flags)
|
| 152 | if av[0]:
|
| 153 | emit(OPCODES[MARK])
|
| 154 | emit((av[0]-1)*2+1)
|
| 155 | elif op in SUCCESS_CODES:
|
| 156 | emit(OPCODES[op])
|
| 157 | elif op in ASSERT_CODES:
|
| 158 | emit(OPCODES[op])
|
| 159 | skip = _len(code); emit(0)
|
| 160 | if av[0] >= 0:
|
| 161 | emit(0) # look ahead
|
| 162 | else:
|
| 163 | lo, hi = av[1].getwidth()
|
| 164 | if lo != hi:
|
| 165 | raise error, "look-behind requires fixed-width pattern"
|
| 166 | emit(lo) # look behind
|
| 167 | _compile(code, av[1], flags)
|
| 168 | emit(OPCODES[SUCCESS])
|
| 169 | code[skip] = _len(code) - skip
|
| 170 | elif op is CALL:
|
| 171 | emit(OPCODES[op])
|
| 172 | skip = _len(code); emit(0)
|
| 173 | _compile(code, av, flags)
|
| 174 | emit(OPCODES[SUCCESS])
|
| 175 | code[skip] = _len(code) - skip
|
| 176 | elif op is AT:
|
| 177 | emit(OPCODES[op])
|
| 178 | if flags & SRE_FLAG_MULTILINE:
|
| 179 | av = AT_MULTILINE.get(av, av)
|
| 180 | if flags & SRE_FLAG_LOCALE:
|
| 181 | av = AT_LOCALE.get(av, av)
|
| 182 | elif flags & SRE_FLAG_UNICODE:
|
| 183 | av = AT_UNICODE.get(av, av)
|
| 184 | emit(ATCODES[av])
|
| 185 | elif op is BRANCH:
|
| 186 | emit(OPCODES[op])
|
| 187 | tail = []
|
| 188 | tailappend = tail.append
|
| 189 | for av in av[1]:
|
| 190 | skip = _len(code); emit(0)
|
| 191 | # _compile_info(code, av, flags)
|
| 192 | _compile(code, av, flags)
|
| 193 | emit(OPCODES[JUMP])
|
| 194 | tailappend(_len(code)); emit(0)
|
| 195 | code[skip] = _len(code) - skip
|
| 196 | emit(0) # end of branch
|
| 197 | for tail in tail:
|
| 198 | code[tail] = _len(code) - tail
|
| 199 | elif op is CATEGORY:
|
| 200 | emit(OPCODES[op])
|
| 201 | if flags & SRE_FLAG_LOCALE:
|
| 202 | av = CH_LOCALE[av]
|
| 203 | elif flags & SRE_FLAG_UNICODE:
|
| 204 | av = CH_UNICODE[av]
|
| 205 | emit(CHCODES[av])
|
| 206 | elif op is GROUPREF:
|
| 207 | if flags & SRE_FLAG_IGNORECASE:
|
| 208 | emit(OPCODES[OP_IGNORE[op]])
|
| 209 | else:
|
| 210 | emit(OPCODES[op])
|
| 211 | emit(av-1)
|
| 212 | elif op is GROUPREF_EXISTS:
|
| 213 | emit(OPCODES[op])
|
| 214 | emit(av[0]-1)
|
| 215 | skipyes = _len(code); emit(0)
|
| 216 | _compile(code, av[1], flags)
|
| 217 | if av[2]:
|
| 218 | emit(OPCODES[JUMP])
|
| 219 | skipno = _len(code); emit(0)
|
| 220 | code[skipyes] = _len(code) - skipyes + 1
|
| 221 | _compile(code, av[2], flags)
|
| 222 | code[skipno] = _len(code) - skipno
|
| 223 | else:
|
| 224 | code[skipyes] = _len(code) - skipyes + 1
|
| 225 | else:
|
| 226 | raise ValueError, ("unsupported operand type", op)
|
| 227 |
|
| 228 | def _compile_charset(charset, flags, code, fixup=None, fixes=None):
|
| 229 | # compile charset subprogram
|
| 230 | emit = code.append
|
| 231 | for op, av in _optimize_charset(charset, fixup, fixes,
|
| 232 | flags & SRE_FLAG_UNICODE):
|
| 233 | emit(OPCODES[op])
|
| 234 | if op is NEGATE:
|
| 235 | pass
|
| 236 | elif op is LITERAL:
|
| 237 | emit(av)
|
| 238 | elif op is RANGE:
|
| 239 | emit(av[0])
|
| 240 | emit(av[1])
|
| 241 | elif op is CHARSET:
|
| 242 | code.extend(av)
|
| 243 | elif op is BIGCHARSET:
|
| 244 | code.extend(av)
|
| 245 | elif op is CATEGORY:
|
| 246 | if flags & SRE_FLAG_LOCALE:
|
| 247 | emit(CHCODES[CH_LOCALE[av]])
|
| 248 | elif flags & SRE_FLAG_UNICODE:
|
| 249 | emit(CHCODES[CH_UNICODE[av]])
|
| 250 | else:
|
| 251 | emit(CHCODES[av])
|
| 252 | else:
|
| 253 | raise error, "internal: unsupported set operator"
|
| 254 | emit(OPCODES[FAILURE])
|
| 255 |
|
| 256 | def _optimize_charset(charset, fixup, fixes, isunicode):
|
| 257 | # internal: optimize character set
|
| 258 | out = []
|
| 259 | tail = []
|
| 260 | charmap = bytearray(256)
|
| 261 | for op, av in charset:
|
| 262 | while True:
|
| 263 | try:
|
| 264 | if op is LITERAL:
|
| 265 | if fixup:
|
| 266 | i = fixup(av)
|
| 267 | charmap[i] = 1
|
| 268 | if fixes and i in fixes:
|
| 269 | for k in fixes[i]:
|
| 270 | charmap[k] = 1
|
| 271 | else:
|
| 272 | charmap[av] = 1
|
| 273 | elif op is RANGE:
|
| 274 | r = range(av[0], av[1]+1)
|
| 275 | if fixup:
|
| 276 | r = map(fixup, r)
|
| 277 | if fixup and fixes:
|
| 278 | for i in r:
|
| 279 | charmap[i] = 1
|
| 280 | if i in fixes:
|
| 281 | for k in fixes[i]:
|
| 282 | charmap[k] = 1
|
| 283 | else:
|
| 284 | for i in r:
|
| 285 | charmap[i] = 1
|
| 286 | elif op is NEGATE:
|
| 287 | out.append((op, av))
|
| 288 | else:
|
| 289 | tail.append((op, av))
|
| 290 | except IndexError:
|
| 291 | if len(charmap) == 256:
|
| 292 | # character set contains non-UCS1 character codes
|
| 293 | charmap += b'\0' * 0xff00
|
| 294 | continue
|
| 295 | # character set contains non-BMP character codes
|
| 296 | if fixup and isunicode and op is RANGE:
|
| 297 | lo, hi = av
|
| 298 | ranges = [av]
|
| 299 | # There are only two ranges of cased astral characters:
|
| 300 | # 10400-1044F (Deseret) and 118A0-118DF (Warang Citi).
|
| 301 | _fixup_range(max(0x10000, lo), min(0x11fff, hi),
|
| 302 | ranges, fixup)
|
| 303 | for lo, hi in ranges:
|
| 304 | if lo == hi:
|
| 305 | tail.append((LITERAL, hi))
|
| 306 | else:
|
| 307 | tail.append((RANGE, (lo, hi)))
|
| 308 | else:
|
| 309 | tail.append((op, av))
|
| 310 | break
|
| 311 |
|
| 312 | # compress character map
|
| 313 | runs = []
|
| 314 | q = 0
|
| 315 | while True:
|
| 316 | p = charmap.find(b'\1', q)
|
| 317 | if p < 0:
|
| 318 | break
|
| 319 | if len(runs) >= 2:
|
| 320 | runs = None
|
| 321 | break
|
| 322 | q = charmap.find(b'\0', p)
|
| 323 | if q < 0:
|
| 324 | runs.append((p, len(charmap)))
|
| 325 | break
|
| 326 | runs.append((p, q))
|
| 327 | if runs is not None:
|
| 328 | # use literal/range
|
| 329 | for p, q in runs:
|
| 330 | if q - p == 1:
|
| 331 | out.append((LITERAL, p))
|
| 332 | else:
|
| 333 | out.append((RANGE, (p, q - 1)))
|
| 334 | out += tail
|
| 335 | # if the case was changed or new representation is more compact
|
| 336 | if fixup or len(out) < len(charset):
|
| 337 | return out
|
| 338 | # else original character set is good enough
|
| 339 | return charset
|
| 340 |
|
| 341 | # use bitmap
|
| 342 | if len(charmap) == 256:
|
| 343 | data = _mk_bitmap(charmap)
|
| 344 | out.append((CHARSET, data))
|
| 345 | out += tail
|
| 346 | return out
|
| 347 |
|
| 348 | # To represent a big charset, first a bitmap of all characters in the
|
| 349 | # set is constructed. Then, this bitmap is sliced into chunks of 256
|
| 350 | # characters, duplicate chunks are eliminated, and each chunk is
|
| 351 | # given a number. In the compiled expression, the charset is
|
| 352 | # represented by a 32-bit word sequence, consisting of one word for
|
| 353 | # the number of different chunks, a sequence of 256 bytes (64 words)
|
| 354 | # of chunk numbers indexed by their original chunk position, and a
|
| 355 | # sequence of 256-bit chunks (8 words each).
|
| 356 |
|
| 357 | # Compression is normally good: in a typical charset, large ranges of
|
| 358 | # Unicode will be either completely excluded (e.g. if only cyrillic
|
| 359 | # letters are to be matched), or completely included (e.g. if large
|
| 360 | # subranges of Kanji match). These ranges will be represented by
|
| 361 | # chunks of all one-bits or all zero-bits.
|
| 362 |
|
| 363 | # Matching can be also done efficiently: the more significant byte of
|
| 364 | # the Unicode character is an index into the chunk number, and the
|
| 365 | # less significant byte is a bit index in the chunk (just like the
|
| 366 | # CHARSET matching).
|
| 367 |
|
| 368 | # In UCS-4 mode, the BIGCHARSET opcode still supports only subsets
|
| 369 | # of the basic multilingual plane; an efficient representation
|
| 370 | # for all of Unicode has not yet been developed.
|
| 371 |
|
| 372 | charmap = bytes(charmap) # should be hashable
|
| 373 | comps = {}
|
| 374 | mapping = bytearray(256)
|
| 375 | block = 0
|
| 376 | data = bytearray()
|
| 377 | for i in range(0, 65536, 256):
|
| 378 | chunk = charmap[i: i + 256]
|
| 379 | if chunk in comps:
|
| 380 | mapping[i // 256] = comps[chunk]
|
| 381 | else:
|
| 382 | mapping[i // 256] = comps[chunk] = block
|
| 383 | block += 1
|
| 384 | data += chunk
|
| 385 | data = _mk_bitmap(data)
|
| 386 | data[0:0] = [block] + _bytes_to_codes(mapping)
|
| 387 | out.append((BIGCHARSET, data))
|
| 388 | out += tail
|
| 389 | return out
|
| 390 |
|
| 391 | def _fixup_range(lo, hi, ranges, fixup):
|
| 392 | for i in map(fixup, range(lo, hi+1)):
|
| 393 | for k, (lo, hi) in enumerate(ranges):
|
| 394 | if i < lo:
|
| 395 | if l == lo - 1:
|
| 396 | ranges[k] = (i, hi)
|
| 397 | else:
|
| 398 | ranges.insert(k, (i, i))
|
| 399 | break
|
| 400 | elif i > hi:
|
| 401 | if i == hi + 1:
|
| 402 | ranges[k] = (lo, i)
|
| 403 | break
|
| 404 | else:
|
| 405 | break
|
| 406 | else:
|
| 407 | ranges.append((i, i))
|
| 408 |
|
| 409 | _CODEBITS = _sre.CODESIZE * 8
|
| 410 | _BITS_TRANS = b'0' + b'1' * 255
|
| 411 | def _mk_bitmap(bits, _CODEBITS=_CODEBITS, _int=int):
|
| 412 | s = bytes(bits).translate(_BITS_TRANS)[::-1]
|
| 413 | return [_int(s[i - _CODEBITS: i], 2)
|
| 414 | for i in range(len(s), 0, -_CODEBITS)]
|
| 415 |
|
| 416 | def _bytes_to_codes(b):
|
| 417 | # Convert block indices to word array
|
| 418 | import array
|
| 419 | if _sre.CODESIZE == 2:
|
| 420 | code = 'H'
|
| 421 | else:
|
| 422 | code = 'I'
|
| 423 | a = array.array(code, bytes(b))
|
| 424 | assert a.itemsize == _sre.CODESIZE
|
| 425 | assert len(a) * a.itemsize == len(b)
|
| 426 | return a.tolist()
|
| 427 |
|
| 428 | def _simple(av):
|
| 429 | # check if av is a "simple" operator
|
| 430 | lo, hi = av[2].getwidth()
|
| 431 | return lo == hi == 1 and av[2][0][0] != SUBPATTERN
|
| 432 |
|
| 433 | def _compile_info(code, pattern, flags):
|
| 434 | # internal: compile an info block. in the current version,
|
| 435 | # this contains min/max pattern width, and an optional literal
|
| 436 | # prefix or a character map
|
| 437 | lo, hi = pattern.getwidth()
|
| 438 | if lo == 0:
|
| 439 | return # not worth it
|
| 440 | # look for a literal prefix
|
| 441 | prefix = []
|
| 442 | prefixappend = prefix.append
|
| 443 | prefix_skip = 0
|
| 444 | charset = [] # not used
|
| 445 | charsetappend = charset.append
|
| 446 | if not (flags & SRE_FLAG_IGNORECASE):
|
| 447 | # look for literal prefix
|
| 448 | for op, av in pattern.data:
|
| 449 | if op is LITERAL:
|
| 450 | if len(prefix) == prefix_skip:
|
| 451 | prefix_skip = prefix_skip + 1
|
| 452 | prefixappend(av)
|
| 453 | elif op is SUBPATTERN and len(av[1]) == 1:
|
| 454 | op, av = av[1][0]
|
| 455 | if op is LITERAL:
|
| 456 | prefixappend(av)
|
| 457 | else:
|
| 458 | break
|
| 459 | else:
|
| 460 | break
|
| 461 | # if no prefix, look for charset prefix
|
| 462 | if not prefix and pattern.data:
|
| 463 | op, av = pattern.data[0]
|
| 464 | if op is SUBPATTERN and av[1]:
|
| 465 | op, av = av[1][0]
|
| 466 | if op is LITERAL:
|
| 467 | charsetappend((op, av))
|
| 468 | elif op is BRANCH:
|
| 469 | c = []
|
| 470 | cappend = c.append
|
| 471 | for p in av[1]:
|
| 472 | if not p:
|
| 473 | break
|
| 474 | op, av = p[0]
|
| 475 | if op is LITERAL:
|
| 476 | cappend((op, av))
|
| 477 | else:
|
| 478 | break
|
| 479 | else:
|
| 480 | charset = c
|
| 481 | elif op is BRANCH:
|
| 482 | c = []
|
| 483 | cappend = c.append
|
| 484 | for p in av[1]:
|
| 485 | if not p:
|
| 486 | break
|
| 487 | op, av = p[0]
|
| 488 | if op is LITERAL:
|
| 489 | cappend((op, av))
|
| 490 | else:
|
| 491 | break
|
| 492 | else:
|
| 493 | charset = c
|
| 494 | elif op is IN:
|
| 495 | charset = av
|
| 496 | ## if prefix:
|
| 497 | ## print "*** PREFIX", prefix, prefix_skip
|
| 498 | ## if charset:
|
| 499 | ## print "*** CHARSET", charset
|
| 500 | # add an info block
|
| 501 | emit = code.append
|
| 502 | emit(OPCODES[INFO])
|
| 503 | skip = len(code); emit(0)
|
| 504 | # literal flag
|
| 505 | mask = 0
|
| 506 | if prefix:
|
| 507 | mask = SRE_INFO_PREFIX
|
| 508 | if len(prefix) == prefix_skip == len(pattern.data):
|
| 509 | mask = mask + SRE_INFO_LITERAL
|
| 510 | elif charset:
|
| 511 | mask = mask + SRE_INFO_CHARSET
|
| 512 | emit(mask)
|
| 513 | # pattern length
|
| 514 | if lo < MAXCODE:
|
| 515 | emit(lo)
|
| 516 | else:
|
| 517 | emit(MAXCODE)
|
| 518 | prefix = prefix[:MAXCODE]
|
| 519 | if hi < MAXCODE:
|
| 520 | emit(hi)
|
| 521 | else:
|
| 522 | emit(0)
|
| 523 | # add literal prefix
|
| 524 | if prefix:
|
| 525 | emit(len(prefix)) # length
|
| 526 | emit(prefix_skip) # skip
|
| 527 | code.extend(prefix)
|
| 528 | # generate overlap table
|
| 529 | table = [-1] + ([0]*len(prefix))
|
| 530 | for i in xrange(len(prefix)):
|
| 531 | table[i+1] = table[i]+1
|
| 532 | while table[i+1] > 0 and prefix[i] != prefix[table[i+1]-1]:
|
| 533 | table[i+1] = table[table[i+1]-1]+1
|
| 534 | code.extend(table[1:]) # don't store first entry
|
| 535 | elif charset:
|
| 536 | _compile_charset(charset, flags, code)
|
| 537 | code[skip] = len(code) - skip
|
| 538 |
|
| 539 | try:
|
| 540 | unicode
|
| 541 | except NameError:
|
| 542 | STRING_TYPES = (type(""),)
|
| 543 | else:
|
| 544 | STRING_TYPES = (type(""), type(unicode("")))
|
| 545 |
|
| 546 | def isstring(obj):
|
| 547 | for tp in STRING_TYPES:
|
| 548 | if isinstance(obj, tp):
|
| 549 | return 1
|
| 550 | return 0
|
| 551 |
|
| 552 | def _code(p, flags):
|
| 553 |
|
| 554 | flags = p.pattern.flags | flags
|
| 555 | code = []
|
| 556 |
|
| 557 | # compile info block
|
| 558 | _compile_info(code, p, flags)
|
| 559 |
|
| 560 | # compile the pattern
|
| 561 | _compile(code, p.data, flags)
|
| 562 |
|
| 563 | code.append(OPCODES[SUCCESS])
|
| 564 |
|
| 565 | return code
|
| 566 |
|
| 567 | def compile(p, flags=0):
|
| 568 | # internal: convert pattern list to internal format
|
| 569 |
|
| 570 | if isstring(p):
|
| 571 | pattern = p
|
| 572 | p = sre_parse.parse(p, flags)
|
| 573 | else:
|
| 574 | pattern = None
|
| 575 |
|
| 576 | code = _code(p, flags)
|
| 577 |
|
| 578 | # print code
|
| 579 |
|
| 580 | # XXX: <fl> get rid of this limitation!
|
| 581 | if p.pattern.groups > 100:
|
| 582 | raise AssertionError(
|
| 583 | "sorry, but this version only supports 100 named groups"
|
| 584 | )
|
| 585 |
|
| 586 | # map in either direction
|
| 587 | groupindex = p.pattern.groupdict
|
| 588 | indexgroup = [None] * p.pattern.groups
|
| 589 | for k, i in groupindex.items():
|
| 590 | indexgroup[i] = k
|
| 591 |
|
| 592 | return _sre.compile(
|
| 593 | pattern, flags | p.pattern.flags, code,
|
| 594 | p.pattern.groups-1,
|
| 595 | groupindex, indexgroup
|
| 596 | )
|