| 1 | #include <assert.h>
|
| 2 | #include <stdarg.h> // va_list, etc.
|
| 3 | #include <stdio.h>
|
| 4 | #include <stdint.h>
|
| 5 | #include <stdlib.h>
|
| 6 | #include <string.h> // memcmp
|
| 7 | #include <vector>
|
| 8 | #include <unordered_map>
|
| 9 |
|
| 10 | #include "opcode.h"
|
| 11 |
|
| 12 | #define VERBOSE_OPS 0
|
| 13 | #define VERBOSE_NAMES 0
|
| 14 | #define VERBOSE_VALUE_STACK 0
|
| 15 | #define VERBOSE_ALLOC 0 // for New*() functions
|
| 16 |
|
| 17 | using std::vector;
|
| 18 | using std::unordered_map;
|
| 19 |
|
| 20 | typedef int32_t Handle;
|
| 21 |
|
| 22 | typedef vector<Handle> Args;
|
| 23 | typedef vector<Handle> Rets;
|
| 24 |
|
| 25 | // Like enum why_code in ceval.c.
|
| 26 | enum class Why {
|
| 27 | Not,
|
| 28 | Exception,
|
| 29 | Reraise,
|
| 30 | Return,
|
| 31 | Break,
|
| 32 | Continue,
|
| 33 | Yield,
|
| 34 | };
|
| 35 |
|
| 36 | enum CompareOp {
|
| 37 | LT,
|
| 38 | LE,
|
| 39 | EQ,
|
| 40 | NE,
|
| 41 | GT,
|
| 42 | GE,
|
| 43 | IS,
|
| 44 | IS_NOT,
|
| 45 | };
|
| 46 |
|
| 47 | //
|
| 48 | // Forward declarations
|
| 49 | //
|
| 50 |
|
| 51 | class OHeap;
|
| 52 |
|
| 53 | //
|
| 54 | // Prototypes
|
| 55 | //
|
| 56 |
|
| 57 | Why func_print(const OHeap& heap, const Args& args, Rets* rets);
|
| 58 |
|
| 59 | //
|
| 60 | // Constants
|
| 61 | //
|
| 62 |
|
| 63 | // TODO: Generate this?
|
| 64 | const int TAG_NONE = -1;
|
| 65 | const int TAG_BOOL = -2;
|
| 66 | const int TAG_INT = -3;
|
| 67 | const int TAG_FLOAT = -4;
|
| 68 | const int TAG_STR = -5;
|
| 69 | const int TAG_TUPLE = -6;
|
| 70 | const int TAG_CODE = -7;
|
| 71 | const int TAG_FUNC = -8;
|
| 72 |
|
| 73 | // Should this be zero? Positive are user defined, negative are native, 0 is
|
| 74 | // invalid? Useful for NewCell() to return on allocation failure. And
|
| 75 | // uninitialized handles should be in an invalid state.
|
| 76 | const int kInvalidHandle = -10;
|
| 77 |
|
| 78 | // TODO: These should be generated
|
| 79 | const int kTrueHandle = -11;
|
| 80 | const int kFalseHandle = -12;
|
| 81 |
|
| 82 | const char* kTagDebugString[] = {
|
| 83 | "",
|
| 84 | "None",
|
| 85 | "bool",
|
| 86 | "int",
|
| 87 | "float",
|
| 88 | "str",
|
| 89 | "tuple",
|
| 90 | "code",
|
| 91 | };
|
| 92 |
|
| 93 | const char* TagDebugString(int tag) {
|
| 94 | return kTagDebugString[-tag];
|
| 95 | }
|
| 96 |
|
| 97 | //
|
| 98 | // Utilities
|
| 99 | //
|
| 100 |
|
| 101 | // Log messages to stdout.
|
| 102 | void log(const char* fmt, ...) {
|
| 103 | va_list args;
|
| 104 | va_start(args, fmt);
|
| 105 | vprintf(fmt, args);
|
| 106 | va_end(args);
|
| 107 | printf("\n");
|
| 108 | }
|
| 109 |
|
| 110 | // Implement hash and equality functors for unordered_map.
|
| 111 | struct NameHash {
|
| 112 | int operator() (const char* s) const {
|
| 113 | // DJB hash: http://www.cse.yorku.ca/~oz/hash.html
|
| 114 | int h = 5381;
|
| 115 |
|
| 116 | while (char c = *s++) {
|
| 117 | h = (h << 5) + h + c;
|
| 118 | }
|
| 119 | return h;
|
| 120 | }
|
| 121 | };
|
| 122 |
|
| 123 | struct NameEq {
|
| 124 | bool operator() (const char* x, const char* y) const {
|
| 125 | return strcmp(x, y) == 0;
|
| 126 | }
|
| 127 | };
|
| 128 |
|
| 129 | // Dictionary of names (char*) to value (Handle).
|
| 130 | //
|
| 131 | // TODO: if we de-dupe all the names in OHeap, and there's no runtime code
|
| 132 | // generation, each variable name string will have exactly one address. So
|
| 133 | // then can we use pointer comparison for equality / hashing? Would be nice.
|
| 134 | typedef unordered_map<const char*, Handle, NameHash, NameEq> NameLookup;
|
| 135 |
|
| 136 |
|
| 137 | // 16 bytes
|
| 138 | struct Cell {
|
| 139 | int16_t tag;
|
| 140 | uint8_t is_slab;
|
| 141 | uint8_t small_len; // end first 4 bytes
|
| 142 |
|
| 143 | union {
|
| 144 | // following TWELVE bytes, for small string, tuple, etc.
|
| 145 | uint8_t small_val[1];
|
| 146 | int32_t big_len; // length of slab. TODO: Use this.
|
| 147 | };
|
| 148 |
|
| 149 | union {
|
| 150 | // The wire format
|
| 151 | struct {
|
| 152 | uint8_t pad[4];
|
| 153 | int32_t offset;
|
| 154 | } slab_wire;
|
| 155 |
|
| 156 | // Resolved memory format
|
| 157 | uint8_t* ptr; // should be 8 bytes on 64-bit systems
|
| 158 | int64_t i;
|
| 159 | double d;
|
| 160 | };
|
| 161 | };
|
| 162 |
|
| 163 | // Same interface for big or small strings.
|
| 164 | // What about hash code? That could be stored with big strings.
|
| 165 | struct Str {
|
| 166 | int32_t len;
|
| 167 | const char* data; // NUL-terminated, but can also contain NUL.
|
| 168 | // should not be mutated.
|
| 169 | };
|
| 170 |
|
| 171 | struct Tuple {
|
| 172 | int32_t len;
|
| 173 | const Handle* handles;
|
| 174 | };
|
| 175 |
|
| 176 |
|
| 177 | // Dicts require special consideration in these cases:
|
| 178 | // - When deserializing, we have to create a new DictIndex from the DictItems
|
| 179 | // array. We compute the size of the index from the number of items.
|
| 180 | // - When garbage collecting, we iterate over DictItems and mark 'key' and
|
| 181 | // 'value' Handles, skipping over the hash value.
|
| 182 | //
|
| 183 | // Another possibility: Why isn't the hash stored with the key itself rather
|
| 184 | // than in the items array? I guess it could be both.
|
| 185 |
|
| 186 | struct DictIndex {
|
| 187 | int size; // power of 2
|
| 188 | int num_used; // is this the same as the number of items?
|
| 189 | // For the load factor.
|
| 190 |
|
| 191 | // The slab first has sparse indices, and then dense items, like CPython.
|
| 192 |
|
| 193 | // Using the same approach as CPython.
|
| 194 | //
|
| 195 | // NOTE PyDict_MINSIZE == 8
|
| 196 | // "8 allows dicts with no more than 5 active entries; experiments suggested
|
| 197 | // this suffices for the majority of dicts (consisting mostly of
|
| 198 | // usually-small dicts created to pass keyword arguments)."
|
| 199 | // This is always a power of 2 (see dictresize() in dictobject.c).
|
| 200 | // So it goes 8, 16, 32 ...
|
| 201 | //
|
| 202 | // Optimization: DictIndex could be shared among different hash tables!
|
| 203 | // As long as they have the exact same set of keys. But how would you
|
| 204 | // determine that?
|
| 205 |
|
| 206 | // Doesn't this produce a lot of unpredictable branches? Maybe as a
|
| 207 | // compromise we could just use options for 2 bytes and 4 bytes? Dicts up
|
| 208 | // to 2**32 should be fine.
|
| 209 | /*
|
| 210 | The size in bytes of an indice depends on dk_size:
|
| 211 |
|
| 212 | - 1 byte if dk_size <= 0xff (char*)
|
| 213 | - 2 bytes if dk_size <= 0xffff (int16_t*)
|
| 214 | - 4 bytes if dk_size <= 0xffffffff (int32_t*)
|
| 215 | - 8 bytes otherwise (int64_t*)
|
| 216 | */
|
| 217 | union {
|
| 218 | int8_t as_1[8];
|
| 219 | int16_t as_2[4];
|
| 220 | int32_t as_4[2];
|
| 221 | #if SIZEOF_VOID_P > 4
|
| 222 | int64_t as_8[1];
|
| 223 | #endif
|
| 224 | } dk_indices;
|
| 225 | };
|
| 226 |
|
| 227 | struct DictSlab {
|
| 228 | // number of items is in Cell big_len
|
| 229 | int items_offset; // offset to later in the slab?
|
| 230 |
|
| 231 | int indices_size; // how many we can have without reallocating
|
| 232 | int indices_used; //
|
| 233 |
|
| 234 | };
|
| 235 |
|
| 236 | struct DictItem {
|
| 237 | uint64_t hash;
|
| 238 | Handle key;
|
| 239 | Handle value;
|
| 240 | };
|
| 241 |
|
| 242 | // Wire format for dicts: a hole for the index, and then an array of DictItem.
|
| 243 | struct DictSlabWire {
|
| 244 | union {
|
| 245 | uint8_t pad[8];
|
| 246 | DictIndex* index;
|
| 247 | };
|
| 248 | // DictItems here. Length is stored in the cell?
|
| 249 | };
|
| 250 |
|
| 251 | class Code {
|
| 252 | public:
|
| 253 | Code(OHeap* heap, Cell* self)
|
| 254 | : heap_(heap),
|
| 255 | self_(self) {
|
| 256 | }
|
| 257 | // Assume the pointers are patched below
|
| 258 | int64_t argcount() const {
|
| 259 | return FieldAsInt(1);
|
| 260 | }
|
| 261 | int64_t nlocals() const {
|
| 262 | return FieldAsInt(2);
|
| 263 | }
|
| 264 | int64_t stacksize() const {
|
| 265 | return FieldAsInt(3);
|
| 266 | }
|
| 267 | int64_t flags() const {
|
| 268 | return FieldAsInt(4);
|
| 269 | }
|
| 270 | int64_t firstlineno() const {
|
| 271 | return FieldAsInt(5);
|
| 272 | }
|
| 273 | Str name() const {
|
| 274 | return FieldAsStr(6);
|
| 275 | }
|
| 276 | Str filename() const {
|
| 277 | return FieldAsStr(7);
|
| 278 | }
|
| 279 | Str code() const {
|
| 280 | return FieldAsStr(8);
|
| 281 | }
|
| 282 | Tuple names() const {
|
| 283 | return FieldAsTuple(9);
|
| 284 | }
|
| 285 | Tuple varnames() const {
|
| 286 | return FieldAsTuple(10);
|
| 287 | }
|
| 288 | Tuple consts() const {
|
| 289 | return FieldAsTuple(11);
|
| 290 | }
|
| 291 |
|
| 292 | private:
|
| 293 | inline Handle GetField(int field_index) const {
|
| 294 | int32_t* slab = reinterpret_cast<int32_t*>(self_->ptr);
|
| 295 | return slab[field_index];
|
| 296 | }
|
| 297 |
|
| 298 | inline int64_t FieldAsInt(int field_index) const;
|
| 299 | inline Str FieldAsStr(int field_index) const;
|
| 300 | inline Tuple FieldAsTuple(int field_index) const;
|
| 301 |
|
| 302 | OHeap* heap_;
|
| 303 | Cell* self_;
|
| 304 | };
|
| 305 |
|
| 306 | // A convenient "view" on a function object. To create a function, you create
|
| 307 | // the cell and the slab directly!
|
| 308 | //
|
| 309 | // LATER: This may have a closure pointer too.
|
| 310 | class Func {
|
| 311 | public:
|
| 312 | Func(OHeap* heap, Cell* self)
|
| 313 | : heap_(heap),
|
| 314 | self_(self) {
|
| 315 | }
|
| 316 | // Code is copyable?
|
| 317 | #if 0
|
| 318 | Code code() const {
|
| 319 | Handle h = 0; // TODO: Field access for handle
|
| 320 | Code c(heap_, heap_->cells_ + h);
|
| 321 | return c;
|
| 322 | }
|
| 323 | #endif
|
| 324 | Tuple defaults() const {
|
| 325 | Tuple t;
|
| 326 | return t;
|
| 327 | //return FieldAsTuple(1);
|
| 328 | }
|
| 329 | // Fields: code, globals, defaults, __doc__,
|
| 330 | // And note that we have to SET them too.
|
| 331 |
|
| 332 | private:
|
| 333 | OHeap* heap_;
|
| 334 | Cell* self_;
|
| 335 | };
|
| 336 |
|
| 337 | class OHeap {
|
| 338 | public:
|
| 339 | OHeap() : slabs_(nullptr), num_cells_(0), max_cells_(0), cells_(nullptr) {
|
| 340 | }
|
| 341 |
|
| 342 | ~OHeap() {
|
| 343 | if (slabs_) {
|
| 344 | free(slabs_);
|
| 345 | }
|
| 346 | if (cells_) {
|
| 347 | free(cells_);
|
| 348 | }
|
| 349 | }
|
| 350 |
|
| 351 | uint8_t* AllocPermanentSlabs(int total_slab_size) {
|
| 352 | slabs_ = static_cast<uint8_t*>(malloc(total_slab_size));
|
| 353 | return slabs_;
|
| 354 | }
|
| 355 |
|
| 356 | Cell* AllocInitialCells(int num_cells) {
|
| 357 | num_cells_ = num_cells;
|
| 358 | // Allocate 2x the number of cells to account for growth.
|
| 359 | //max_cells_ = num_cells * 2;
|
| 360 | max_cells_ = num_cells * 10;
|
| 361 | cells_ = static_cast<Cell*>(malloc(sizeof(Cell) * max_cells_));
|
| 362 | return cells_;
|
| 363 | }
|
| 364 |
|
| 365 | bool AsInt(Handle h, int64_t* out) const {
|
| 366 | assert(h >= 0);
|
| 367 | const Cell& cell = cells_[h];
|
| 368 | if (cell.tag != TAG_INT) {
|
| 369 | return false;
|
| 370 | }
|
| 371 | *out = cell.i;
|
| 372 | return true;
|
| 373 | }
|
| 374 |
|
| 375 | // C string. NULL if the cell isn't a string.
|
| 376 | // NOTE: Shouldn't modify this?
|
| 377 | const char* AsStr0(Handle h) const {
|
| 378 | assert(h >= 0);
|
| 379 | const Cell& cell = cells_[h];
|
| 380 | if (cell.tag != TAG_STR) {
|
| 381 | log("AsStr0 expected string but got tag %d", cell.tag);
|
| 382 | return nullptr;
|
| 383 | }
|
| 384 | if (cell.is_slab) {
|
| 385 | int32_t* str_slab = reinterpret_cast<int32_t*>(cell.ptr);
|
| 386 | // everything after len
|
| 387 | return reinterpret_cast<const char*>(str_slab + 1);
|
| 388 | } else {
|
| 389 | return reinterpret_cast<const char*>(&cell.small_val);
|
| 390 | }
|
| 391 | }
|
| 392 | // Sets str and len. Returns false if the Cell isn't a string.
|
| 393 | bool AsStr(Handle h, Str* out) const {
|
| 394 | assert(h >= 0);
|
| 395 | const Cell& cell = cells_[h];
|
| 396 | if (cell.tag != TAG_STR) {
|
| 397 | return false;
|
| 398 | }
|
| 399 | if (cell.is_slab) {
|
| 400 | int32_t* str_slab = reinterpret_cast<int32_t*>(cell.ptr);
|
| 401 | out->len = *str_slab;
|
| 402 | // everything after len
|
| 403 | out->data = reinterpret_cast<const char*>(str_slab + 1);
|
| 404 | } else {
|
| 405 | out->len = cell.small_len; // in bytes
|
| 406 | out->data = reinterpret_cast<const char*>(&cell.small_val);
|
| 407 | }
|
| 408 | return true;
|
| 409 | }
|
| 410 |
|
| 411 | bool AsTuple(Handle h, Tuple* out) {
|
| 412 | assert(h >= 0);
|
| 413 | const Cell& cell = cells_[h];
|
| 414 | if (cell.tag != TAG_TUPLE) {
|
| 415 | return false;
|
| 416 | }
|
| 417 | if (cell.is_slab) {
|
| 418 | int32_t* tuple_slab = reinterpret_cast<int32_t*>(cell.ptr);
|
| 419 | out->len = *tuple_slab;
|
| 420 | // everything after len
|
| 421 | out->handles = reinterpret_cast<const Handle*>(tuple_slab + 1);
|
| 422 | } else {
|
| 423 | out->len = cell.small_len; // in entries
|
| 424 | out->handles = reinterpret_cast<const Handle*>(&cell.small_val);
|
| 425 | }
|
| 426 | return true;
|
| 427 | };
|
| 428 |
|
| 429 | // TODO: How do we bounds check?
|
| 430 | Code AsCode(Handle h) {
|
| 431 | assert(h >= 0);
|
| 432 | log("tag = %d", cells_[h].tag);
|
| 433 | assert(cells_[h].tag == TAG_CODE);
|
| 434 | return Code(this, cells_ + h);
|
| 435 | }
|
| 436 |
|
| 437 | // Returns whether the value is truthy, according to Python's rules.
|
| 438 | // Should we unify this with the bool() constructor?
|
| 439 | bool Truthy(Handle h) {
|
| 440 | assert(h >= 0);
|
| 441 | const Cell& cell = cells_[h];
|
| 442 | switch (cell.tag) {
|
| 443 | case TAG_NONE:
|
| 444 | return false;
|
| 445 | case TAG_BOOL:
|
| 446 | return cell.i != 0; // True or False
|
| 447 | case TAG_INT:
|
| 448 | return cell.i != 0; // nonzero
|
| 449 | case TAG_FLOAT:
|
| 450 | return cell.d != 0.0; // Is this correct?
|
| 451 | case TAG_STR: {
|
| 452 | Str s;
|
| 453 | AsStr(h, &s);
|
| 454 | return s.len != 0;
|
| 455 | }
|
| 456 | case TAG_TUPLE:
|
| 457 | assert(0); // TODO
|
| 458 | break;
|
| 459 | case TAG_CODE:
|
| 460 | return true; // always truthy
|
| 461 |
|
| 462 | // NOTE: Instances don't get to override nonzero? They are always true.
|
| 463 |
|
| 464 | default:
|
| 465 | assert(0); // TODO
|
| 466 | }
|
| 467 | }
|
| 468 |
|
| 469 | // For now just append to end. Later we have to look at the free list.
|
| 470 | Handle NewCell() {
|
| 471 | // TODO: Should we reserve handle 0 for NULL, an allocation failure? The
|
| 472 | // file format will bloat by 16 bytes?
|
| 473 | if (num_cells_ == max_cells_) {
|
| 474 | log("Allocation failure: num_cells_ = %d", num_cells_);
|
| 475 | assert(0);
|
| 476 | }
|
| 477 | return num_cells_++;
|
| 478 | }
|
| 479 |
|
| 480 | // TODO: append to cells_.
|
| 481 | // Zero out the 16 bytes first, and then set cell.i?
|
| 482 | Handle NewInt(int64_t i) {
|
| 483 | Handle h = NewCell();
|
| 484 | memset(cells_ + h, 0, sizeof(Cell));
|
| 485 | cells_[h].tag = TAG_INT;
|
| 486 | cells_[h].i = i;
|
| 487 | #if VERBOSE_ALLOC
|
| 488 | log("new int <id = %d> %d", h, i);
|
| 489 | #endif
|
| 490 | return h;
|
| 491 | }
|
| 492 | Handle NewStr0(const char* s) {
|
| 493 | Handle h = NewCell();
|
| 494 | memset(cells_ + h, 0, sizeof(Cell));
|
| 495 | cells_[h].tag = TAG_STR;
|
| 496 |
|
| 497 | // TODO: Determine if its big or small.
|
| 498 | assert(0);
|
| 499 | return h;
|
| 500 | }
|
| 501 |
|
| 502 | Handle NewTuple(int initial_size) {
|
| 503 | assert(0);
|
| 504 | return kInvalidHandle;
|
| 505 | }
|
| 506 |
|
| 507 | Handle NewFunc(Handle code, NameLookup* globals) {
|
| 508 | Handle h = NewCell();
|
| 509 | memset(cells_ + h, 0, sizeof(Cell));
|
| 510 | cells_[h].tag = TAG_FUNC;
|
| 511 |
|
| 512 | // NOTE: This should be a Cell because we want to freeze it!
|
| 513 |
|
| 514 | // This should be a pointer to a slab. TODO: So we need a function to
|
| 515 | // allocate a slab with 3 fields? code, globals, defaults are essential.
|
| 516 | // THen it could be small.
|
| 517 | //
|
| 518 | // BUT we also want a docstring? That will be useful for running some code.
|
| 519 | // So it needs to be a slab.
|
| 520 | //
|
| 521 | // Should there be indirection with "globals"? It should be its own handle?
|
| 522 | // Yes I think it's a handle to an entry of sys.modules?
|
| 523 |
|
| 524 | cells_[h].ptr = nullptr;
|
| 525 |
|
| 526 | assert(0);
|
| 527 | return kInvalidHandle;
|
| 528 | }
|
| 529 |
|
| 530 | int Last() {
|
| 531 | return num_cells_ - 1;
|
| 532 | }
|
| 533 |
|
| 534 | void DebugString(Handle h) {
|
| 535 | const Cell& cell = cells_[h];
|
| 536 |
|
| 537 | fprintf(stderr, " <id %d> ", h);
|
| 538 |
|
| 539 | switch (cell.tag) {
|
| 540 | case TAG_NONE:
|
| 541 | log("None");
|
| 542 | break;
|
| 543 | case TAG_BOOL:
|
| 544 | log("Bool");
|
| 545 | break;
|
| 546 | case TAG_INT: {
|
| 547 | int64_t i;
|
| 548 | AsInt(h, &i);
|
| 549 | log("Int %d", i);
|
| 550 | break;
|
| 551 | }
|
| 552 | case TAG_FLOAT:
|
| 553 | log("Float");
|
| 554 | break;
|
| 555 | case TAG_STR:
|
| 556 | log("Str %s", AsStr0(h));
|
| 557 | break;
|
| 558 | default:
|
| 559 | log("%s", TagDebugString(cell.tag));
|
| 560 | }
|
| 561 | }
|
| 562 |
|
| 563 | // Getter
|
| 564 | inline Cell* cells() {
|
| 565 | return cells_;
|
| 566 | }
|
| 567 | private:
|
| 568 | uint8_t* slabs_; // so we can free it, not used directly
|
| 569 | int num_cells_;
|
| 570 | int max_cells_;
|
| 571 | Cell* cells_;
|
| 572 | };
|
| 573 |
|
| 574 |
|
| 575 | //
|
| 576 | // Code implementation. Must come after OHeap declaration.
|
| 577 | //
|
| 578 |
|
| 579 | inline int64_t Code::FieldAsInt(int field_index) const {
|
| 580 | Handle h = GetField(field_index);
|
| 581 | int64_t i;
|
| 582 | assert(heap_->AsInt(h, &i)); // invalid bytecode not handled
|
| 583 | return i;
|
| 584 | }
|
| 585 |
|
| 586 | inline Str Code::FieldAsStr(int field_index) const {
|
| 587 | Handle h = GetField(field_index);
|
| 588 |
|
| 589 | Str s;
|
| 590 | assert(heap_->AsStr(h, &s)); // invalid bytecode not handled
|
| 591 | return s;
|
| 592 | }
|
| 593 |
|
| 594 | inline Tuple Code::FieldAsTuple(int field_index) const {
|
| 595 | Handle h = GetField(field_index);
|
| 596 |
|
| 597 | Tuple t;
|
| 598 | assert(heap_->AsTuple(h, &t)); // invalid bytecode not handled
|
| 599 | return t;
|
| 600 | }
|
| 601 |
|
| 602 | //
|
| 603 | // File I/O
|
| 604 | //
|
| 605 |
|
| 606 | const char* kHeader = "OHP2";
|
| 607 | const int kHeaderLen = 4;
|
| 608 |
|
| 609 | bool ReadHeader(FILE* f) {
|
| 610 | char buf[kHeaderLen];
|
| 611 | if (fread(buf, kHeaderLen, 1, f) != 1) {
|
| 612 | log("Couldn't read OHeap header");
|
| 613 | return false;
|
| 614 | }
|
| 615 | if (memcmp(buf, kHeader, kHeaderLen) != 0) {
|
| 616 | log("Error: expected '%s' in OHeap header", kHeader);
|
| 617 | return false;
|
| 618 | }
|
| 619 | return true;
|
| 620 | }
|
| 621 |
|
| 622 | bool Load(FILE* f, OHeap* heap) {
|
| 623 | if (!ReadHeader(f)) {
|
| 624 | return false;
|
| 625 | }
|
| 626 |
|
| 627 | int32_t total_slab_size = 0;
|
| 628 | if (fread(&total_slab_size, sizeof total_slab_size, 1, f) != 1) {
|
| 629 | log("Error reading total_slab_size");
|
| 630 | return false;
|
| 631 | }
|
| 632 | log("total_slab_size = %d", total_slab_size);
|
| 633 |
|
| 634 | int32_t num_cells = 0;
|
| 635 | if (fread(&num_cells, sizeof num_cells, 1, f) != 1) {
|
| 636 | log("Error reading num_cells");
|
| 637 | return false;
|
| 638 | }
|
| 639 | log("num_cells = %d", num_cells);
|
| 640 |
|
| 641 | int32_t num_read;
|
| 642 |
|
| 643 | // TODO: Limit total size of slabs?
|
| 644 | uint8_t* slabs = heap->AllocPermanentSlabs(total_slab_size);
|
| 645 | num_read = fread(slabs, 1, total_slab_size, f);
|
| 646 | if (num_read != total_slab_size) {
|
| 647 | log("Error reading slabs");
|
| 648 | return false;
|
| 649 | }
|
| 650 |
|
| 651 | size_t pos = ftell(f);
|
| 652 | log("pos after reading slabs = %d", pos);
|
| 653 |
|
| 654 | Cell* cells = heap->AllocInitialCells(num_cells);
|
| 655 | num_read = fread(cells, sizeof(Cell), num_cells, f);
|
| 656 | if (num_read != num_cells) {
|
| 657 | log("Error: expected %d cells, got %d", num_cells, num_read);
|
| 658 | return false;
|
| 659 | }
|
| 660 |
|
| 661 | // Patch the offsets into pointers.
|
| 662 | int num_slabs = 0;
|
| 663 | for (int i = 0; i < num_cells; ++i) {
|
| 664 | const Cell& cell = cells[i];
|
| 665 | if (cell.is_slab) {
|
| 666 | num_slabs++;
|
| 667 | int32_t slab_offset = cell.slab_wire.offset;
|
| 668 | //log("i = %d, slab offset = %d", i, slab_offset);
|
| 669 | cells[i].ptr = slabs + slab_offset;
|
| 670 | //log("ptr = %p", cell.ptr);
|
| 671 | }
|
| 672 | }
|
| 673 | log("Patched %d slabs", num_slabs);
|
| 674 |
|
| 675 | // Print out all the slab lengths for verification.
|
| 676 | for (int i = 0; i < num_cells; ++i) {
|
| 677 | const Cell& cell = cells[i];
|
| 678 | if (cell.is_slab) {
|
| 679 | //log("i = %d", i);
|
| 680 | //log("ptr = %p", cell.ptr);
|
| 681 | int32_t* start = reinterpret_cast<int32_t*>(cell.ptr);
|
| 682 | //log("start = %p", start);
|
| 683 | int32_t len = *start;
|
| 684 | log("slab len = %d", len);
|
| 685 | }
|
| 686 | }
|
| 687 |
|
| 688 | return true;
|
| 689 | }
|
| 690 |
|
| 691 | enum class BlockType : uint8_t {
|
| 692 | Loop,
|
| 693 | Except,
|
| 694 | Finally,
|
| 695 | With,
|
| 696 | };
|
| 697 |
|
| 698 | // Like PyTryBlock in frameobject.h
|
| 699 | struct Block {
|
| 700 | BlockType type;
|
| 701 | uint8_t level; // VALUE stack level to pop to.
|
| 702 | uint16_t jump_target; // Called 'handler' in CPython.
|
| 703 | };
|
| 704 |
|
| 705 | class Frame {
|
| 706 | public:
|
| 707 | // TODO: Reserve the right size for these stacks?
|
| 708 | // from co.stacksize
|
| 709 | Frame(const Code& co)
|
| 710 | : co_(co),
|
| 711 | value_stack_(),
|
| 712 | block_stack_(),
|
| 713 | last_i_(0),
|
| 714 | globals_(),
|
| 715 | locals_() {
|
| 716 | }
|
| 717 | // Take the handle of a string, and return a handle of a value.
|
| 718 | Handle LoadName(const char* name) {
|
| 719 | #if VERBOSE_NAMES
|
| 720 | log("-- Looking up %s", name);
|
| 721 | #endif
|
| 722 |
|
| 723 | auto it = locals_.find(name);
|
| 724 | if (it != locals_.end()) {
|
| 725 | return it->second;
|
| 726 | }
|
| 727 |
|
| 728 | if (strcmp(name, "print") == 0) {
|
| 729 | return -1; // special value for a C function?
|
| 730 | }
|
| 731 |
|
| 732 | return 0; // should this be a specal value?
|
| 733 | }
|
| 734 | void StoreName(const char* name, Handle value_h) {
|
| 735 | locals_[name] = value_h;
|
| 736 | }
|
| 737 | inline void JumpTo(int dest) {
|
| 738 | last_i_ = dest;
|
| 739 | }
|
| 740 | inline void JumpRelative(int offset) {
|
| 741 | last_i_ += offset; // Is this correct?
|
| 742 | }
|
| 743 | const Code& co_; // public for now
|
| 744 | vector<Handle> value_stack_;
|
| 745 | vector<Block> block_stack_;
|
| 746 | int last_i_; // index into bytecode (which is variable length)
|
| 747 | NameLookup globals_;
|
| 748 | private:
|
| 749 | NameLookup locals_;
|
| 750 | };
|
| 751 |
|
| 752 | class VM {
|
| 753 | public:
|
| 754 | VM(OHeap* heap)
|
| 755 | : heap_(heap) {
|
| 756 | }
|
| 757 | ~VM() {
|
| 758 | for (auto* frame : call_stack_) {
|
| 759 | delete frame;
|
| 760 | }
|
| 761 | }
|
| 762 |
|
| 763 | // Like PyEval_EvalFrameEx. It has to be on the VM object in order to create
|
| 764 | Why RunFrame(Frame* frame);
|
| 765 |
|
| 766 | // Treat the last object on the heap as a code object to run.
|
| 767 | Why RunMain();
|
| 768 |
|
| 769 | private:
|
| 770 | void DebugHandleArray(const vector<Handle>& handles);
|
| 771 |
|
| 772 | OHeap* heap_;
|
| 773 | vector<Frame*> call_stack_; // call stack
|
| 774 | Handle modules; // like sys.modules. A dictionary of globals.
|
| 775 |
|
| 776 | // See PyThreadState for other stuff that goes here.
|
| 777 | // Exception info, profiling, tracing, counters, etc.
|
| 778 |
|
| 779 | // PyInterpreterState: modules, sysdict, builtins, module reloading
|
| 780 | // OVM won't have overridable builtins.
|
| 781 | };
|
| 782 |
|
| 783 | void VM::DebugHandleArray(const vector<Handle>& handles) {
|
| 784 | printf("(%zu) [ ", handles.size());
|
| 785 | for (Handle h : handles) {
|
| 786 | printf("%d ", h);
|
| 787 | }
|
| 788 | printf("]\n");
|
| 789 |
|
| 790 | printf(" [ ");
|
| 791 | for (Handle h : handles) {
|
| 792 | if (h < 0) {
|
| 793 | printf("(native) ");
|
| 794 | } else {
|
| 795 | int tag = heap_->cells()[h].tag;
|
| 796 | printf("%s ", TagDebugString(tag));
|
| 797 | }
|
| 798 | }
|
| 799 | printf("]\n");
|
| 800 |
|
| 801 | }
|
| 802 |
|
| 803 | void CodeDebugString(const Code& co, OHeap* heap) {
|
| 804 | log("argcount = %d", co.argcount());
|
| 805 | log("nlocals = %d", co.nlocals());
|
| 806 | log("stacksize = %d", co.stacksize());
|
| 807 | log("flags = %d", co.flags());
|
| 808 | log("firstlineno = %d", co.firstlineno());
|
| 809 |
|
| 810 | log("name = %s", co.name().data);
|
| 811 | log("filename = %s", co.filename().data);
|
| 812 | log("len(code) = %d", co.code().len);
|
| 813 |
|
| 814 | log("len(names) = %d", co.names().len);
|
| 815 | log("len(varnames) = %d", co.varnames().len);
|
| 816 | Tuple consts = co.consts();
|
| 817 |
|
| 818 | log("len(consts) = %d", consts.len);
|
| 819 |
|
| 820 | log("consts {");
|
| 821 | for (int i = 0; i < consts.len; ++i) {
|
| 822 | heap->DebugString(consts.handles[i]);
|
| 823 | }
|
| 824 | log("}");
|
| 825 | log("-----");
|
| 826 | }
|
| 827 |
|
| 828 | Why VM::RunFrame(Frame* frame) {
|
| 829 | const Code& co = frame->co_;
|
| 830 |
|
| 831 | Tuple names = co.names();
|
| 832 | //Tuple varnames = co.varnames();
|
| 833 | Tuple consts = co.consts();
|
| 834 |
|
| 835 | vector<Handle>& value_stack = frame->value_stack_;
|
| 836 | vector<Block>& block_stack = frame->block_stack_;
|
| 837 |
|
| 838 | CodeDebugString(co, heap_); // Show what code we're running.
|
| 839 |
|
| 840 | Why why = Why::Not;
|
| 841 | Handle retval = kInvalidHandle;
|
| 842 |
|
| 843 | Str b = co.code();
|
| 844 | int code_len = b.len;
|
| 845 | const uint8_t* bytecode = reinterpret_cast<const uint8_t*>(b.data);
|
| 846 |
|
| 847 | int inst_count = 0;
|
| 848 |
|
| 849 | while (true) {
|
| 850 | assert(0 <= frame->last_i_);
|
| 851 | assert(frame->last_i_ < code_len);
|
| 852 |
|
| 853 | uint8_t op = bytecode[frame->last_i_];
|
| 854 | int oparg;
|
| 855 | frame->last_i_++;
|
| 856 | #if VERBOSE_OPS
|
| 857 | printf("%20s", kOpcodeNames[op]);
|
| 858 | #endif
|
| 859 |
|
| 860 | if (op >= HAVE_ARGUMENT) {
|
| 861 | int i = frame->last_i_;
|
| 862 | oparg = bytecode[i] + (bytecode[i+1] << 8);
|
| 863 | #if VERBOSE_OPS
|
| 864 | printf(" %5d (last_i_ = %d)", oparg, i);
|
| 865 | if (oparg < 0) {
|
| 866 | log(" oparg bytes: %d %d", bytecode[i], bytecode[i+1]);
|
| 867 | }
|
| 868 | #endif
|
| 869 | frame->last_i_ += 2;
|
| 870 | }
|
| 871 | #if VERBOSE_OPS
|
| 872 | printf("\n");
|
| 873 | #endif
|
| 874 |
|
| 875 | switch(op) {
|
| 876 | case LOAD_CONST:
|
| 877 | //log("load_const handle = %d", consts.handles[oparg]);
|
| 878 | // NOTE: bounds check?
|
| 879 | value_stack.push_back(consts.handles[oparg]);
|
| 880 | break;
|
| 881 | case LOAD_NAME: {
|
| 882 | Handle name_h = names.handles[oparg];
|
| 883 | const char* name = heap_->AsStr0(name_h);
|
| 884 | assert(name != nullptr); // Invalid bytecode not handled
|
| 885 |
|
| 886 | //log("load_name handle = %d", names.handles[oparg]);
|
| 887 | Handle h = frame->LoadName(name);
|
| 888 | value_stack.push_back(h);
|
| 889 | break;
|
| 890 | }
|
| 891 | case STORE_NAME: {
|
| 892 | Handle name_h = names.handles[oparg];
|
| 893 | const char* name = heap_->AsStr0(name_h);
|
| 894 | assert(name != nullptr); // Invalid bytecode not handled
|
| 895 |
|
| 896 | frame->StoreName(name, value_stack.back());
|
| 897 | value_stack.pop_back();
|
| 898 | break;
|
| 899 | }
|
| 900 | case POP_TOP:
|
| 901 | value_stack.pop_back();
|
| 902 | break;
|
| 903 | case CALL_FUNCTION: {
|
| 904 | int num_args = oparg & 0xff;
|
| 905 | //int num_kwargs = (oparg >> 8) & 0xff; // copied from CPython
|
| 906 | //log("num_args %d", num_args);
|
| 907 |
|
| 908 | #if VERBOSE_VALUE_STACK
|
| 909 | log("value stack on CALL_FUNCTION");
|
| 910 | DebugHandleArray(value_stack);
|
| 911 | #endif
|
| 912 |
|
| 913 | vector<Handle> args;
|
| 914 | args.reserve(num_args); // reserve the right size
|
| 915 |
|
| 916 | // Pop num_args off. TODO: Could print() builtin do this itself to avoid
|
| 917 | // copying?
|
| 918 | for (int i = 0; i < num_args; ++i ) {
|
| 919 | args.push_back(value_stack.back());
|
| 920 | value_stack.pop_back();
|
| 921 | }
|
| 922 | #if VERBOSE_VALUE_STACK
|
| 923 | log("Popped args:");
|
| 924 | DebugHandleArray(args);
|
| 925 |
|
| 926 | log("Value stack after popping args:");
|
| 927 | DebugHandleArray(value_stack);
|
| 928 | #endif
|
| 929 |
|
| 930 | // Pop the function itself off
|
| 931 | Handle func_handle = value_stack.back();
|
| 932 | value_stack.pop_back();
|
| 933 |
|
| 934 | //log("func handle %d", func_handle);
|
| 935 |
|
| 936 | vector<Handle> rets;
|
| 937 | if (func_handle < 0) {
|
| 938 | // TODO: dispatch table for native functions.
|
| 939 | // Call func_print for now.
|
| 940 |
|
| 941 | why = func_print(*heap_, args, &rets);
|
| 942 | if (why != Why::Not) {
|
| 943 | log("EXCEPTION after calling native function");
|
| 944 | break;
|
| 945 | }
|
| 946 | } else {
|
| 947 | //Func func; // has CodeObject and more?
|
| 948 | //heap_->AsFunc(func_handle, &func);
|
| 949 | //CallFunction(func, args, &rets);
|
| 950 | rets.push_back(0);
|
| 951 | }
|
| 952 |
|
| 953 | // Now push return values.
|
| 954 | assert(rets.size() == 1);
|
| 955 | value_stack.push_back(rets[0]);
|
| 956 | break;
|
| 957 | }
|
| 958 |
|
| 959 | // Computation
|
| 960 | case COMPARE_OP: {
|
| 961 | Handle w = value_stack.back();
|
| 962 | value_stack.pop_back();
|
| 963 | Handle v = value_stack.back();
|
| 964 | value_stack.pop_back();
|
| 965 |
|
| 966 | // CPython inlines cmp(int, int) too.
|
| 967 | int64_t a, b;
|
| 968 | bool result;
|
| 969 | if (heap_->AsInt(v, &a) && heap_->AsInt(w, &b)) {
|
| 970 | switch (oparg) {
|
| 971 | case CompareOp::LT: result = a < b; break;
|
| 972 | case CompareOp::LE: result = a <= b; break;
|
| 973 | case CompareOp::EQ: result = a == b; break;
|
| 974 | case CompareOp::NE: result = a != b; break;
|
| 975 | case CompareOp::GT: result = a > b; break;
|
| 976 | case CompareOp::GE: result = a >= b; break;
|
| 977 | //case CompareOp::IS: result = v == w; break;
|
| 978 | //case CompareOp::IS_NOT: result = v != w; break;
|
| 979 | default:
|
| 980 | log("Unhandled compare %d", oparg);
|
| 981 | assert(0);
|
| 982 | }
|
| 983 | // TODO: Avoid stack movement by SET_TOP().
|
| 984 |
|
| 985 | // Use canonical handles rather than allocating bools.
|
| 986 | value_stack.push_back(result ? kTrueHandle : kFalseHandle);
|
| 987 | } else {
|
| 988 | assert(0);
|
| 989 | }
|
| 990 | break;
|
| 991 | }
|
| 992 |
|
| 993 | case BINARY_ADD: {
|
| 994 | Handle w = value_stack.back();
|
| 995 | value_stack.pop_back();
|
| 996 | Handle v = value_stack.back();
|
| 997 | value_stack.pop_back();
|
| 998 |
|
| 999 | int64_t a, b, result;
|
| 1000 | if (heap_->AsInt(w, &a) && heap_->AsInt(v, &b)) {
|
| 1001 | result = a + b;
|
| 1002 | } else {
|
| 1003 | // TODO: Concatenate strings, tuples, lists
|
| 1004 | assert(0);
|
| 1005 | }
|
| 1006 |
|
| 1007 | Handle result_h = heap_->NewInt(result);
|
| 1008 | value_stack.push_back(result_h);
|
| 1009 | break;
|
| 1010 | }
|
| 1011 |
|
| 1012 | case BINARY_MODULO: {
|
| 1013 | Handle w = value_stack.back();
|
| 1014 | value_stack.pop_back();
|
| 1015 | Handle v = value_stack.back();
|
| 1016 | value_stack.pop_back();
|
| 1017 |
|
| 1018 | Str s;
|
| 1019 | if (heap_->AsStr(v, &s)) {
|
| 1020 | // TODO: Do string formatting
|
| 1021 | assert(0);
|
| 1022 | }
|
| 1023 |
|
| 1024 | int64_t a, b, result;
|
| 1025 | if (heap_->AsInt(v, &a) && heap_->AsInt(w, &b)) {
|
| 1026 | result = a % b;
|
| 1027 | Handle result_h = heap_->NewInt(result);
|
| 1028 | value_stack.push_back(result_h);
|
| 1029 | break;
|
| 1030 | }
|
| 1031 |
|
| 1032 | // TODO: TypeError
|
| 1033 | assert(0);
|
| 1034 |
|
| 1035 | break;
|
| 1036 | }
|
| 1037 |
|
| 1038 | //
|
| 1039 | // Jumps
|
| 1040 | //
|
| 1041 | case JUMP_ABSOLUTE:
|
| 1042 | frame->JumpTo(oparg);
|
| 1043 | break;
|
| 1044 |
|
| 1045 | case JUMP_FORWARD:
|
| 1046 | frame->JumpRelative(oparg);
|
| 1047 | break;
|
| 1048 |
|
| 1049 | case POP_JUMP_IF_FALSE: {
|
| 1050 | Handle w = value_stack.back();
|
| 1051 | value_stack.pop_back();
|
| 1052 |
|
| 1053 | // Special case for Py_True / Py_False like CPython.
|
| 1054 | if (w == kTrueHandle) {
|
| 1055 | break;
|
| 1056 | }
|
| 1057 | if (w == kFalseHandle || !heap_->Truthy(w)) {
|
| 1058 | frame->JumpTo(oparg);
|
| 1059 | }
|
| 1060 | break;
|
| 1061 | }
|
| 1062 |
|
| 1063 | //
|
| 1064 | // Control Flow
|
| 1065 | //
|
| 1066 |
|
| 1067 | case SETUP_LOOP: {
|
| 1068 | Block b;
|
| 1069 | b.type = BlockType::Loop;
|
| 1070 | b.level = value_stack.size();
|
| 1071 | b.jump_target = frame->last_i_ + oparg; // oparg is relative jump target
|
| 1072 | block_stack.push_back(b);
|
| 1073 | break;
|
| 1074 | }
|
| 1075 |
|
| 1076 | case POP_BLOCK:
|
| 1077 | block_stack.pop_back();
|
| 1078 | break;
|
| 1079 |
|
| 1080 | case BREAK_LOOP:
|
| 1081 | why = Why::Break;
|
| 1082 | break;
|
| 1083 |
|
| 1084 | case RETURN_VALUE:
|
| 1085 | // TODO: Set return value here. It's just a Handle I guess.
|
| 1086 | retval = value_stack.back();
|
| 1087 | value_stack.pop_back();
|
| 1088 | why = Why::Return;
|
| 1089 | break;
|
| 1090 |
|
| 1091 | case MAKE_FUNCTION: {
|
| 1092 | Handle code = value_stack.back();
|
| 1093 | value_stack.pop_back();
|
| 1094 | // TODO: default arguments are on the stack.
|
| 1095 | if (oparg) {
|
| 1096 | //Handle defaults = heap_->NewTuple(oparg); // initial size
|
| 1097 | for (int i = 0; i < oparg; ++i) {
|
| 1098 | value_stack.pop_back();
|
| 1099 | }
|
| 1100 | }
|
| 1101 | // the function is run with the same globals as the frame it was defined in
|
| 1102 | NameLookup* globals = &frame->globals_;
|
| 1103 | Handle func = heap_->NewFunc(code, globals);
|
| 1104 | value_stack.push_back(func);
|
| 1105 | }
|
| 1106 |
|
| 1107 | default:
|
| 1108 | log("Unhandled instruction");
|
| 1109 | break;
|
| 1110 |
|
| 1111 | }
|
| 1112 |
|
| 1113 | while (why != Why::Not && block_stack.size()) {
|
| 1114 | assert(why != Why::Yield);
|
| 1115 | Block b = block_stack.back();
|
| 1116 |
|
| 1117 | // TODO: This code appears to be unused! continue compiles as
|
| 1118 | // POP_JUMP_IF_FALSE!
|
| 1119 | if (b.type == BlockType::Loop && why == Why::Continue) {
|
| 1120 | assert(0);
|
| 1121 | // TODO: retval? I guess it's popped off the stack.
|
| 1122 | frame->JumpTo(retval);
|
| 1123 | }
|
| 1124 | block_stack.pop_back();
|
| 1125 |
|
| 1126 | // Unwind value stack to the saved level.
|
| 1127 | while (value_stack.size() > b.level) {
|
| 1128 | value_stack.pop_back();
|
| 1129 | }
|
| 1130 |
|
| 1131 | if (b.type == BlockType::Loop && why == Why::Break) {
|
| 1132 | why = Why::Not;
|
| 1133 | frame->JumpTo(b.jump_target);
|
| 1134 | }
|
| 1135 |
|
| 1136 | if (b.type == BlockType::Finally ||
|
| 1137 | b.type == BlockType::Except && why == Why::Exception ||
|
| 1138 | b.type == BlockType::With) {
|
| 1139 | assert(0);
|
| 1140 | }
|
| 1141 | }
|
| 1142 |
|
| 1143 | // TODO: Handle the block stack. Break should JUMP to the location in the
|
| 1144 | // block handler!
|
| 1145 | if (why != Why::Not) { // return, yield, continue, etc.
|
| 1146 | break;
|
| 1147 | }
|
| 1148 | inst_count++;
|
| 1149 | }
|
| 1150 |
|
| 1151 | log("Processed %d instructions", inst_count);
|
| 1152 | return why;
|
| 1153 | }
|
| 1154 |
|
| 1155 | Why VM::RunMain() {
|
| 1156 | Code co = heap_->AsCode(heap_->Last());
|
| 1157 |
|
| 1158 | Frame* frame = new Frame(co);
|
| 1159 | call_stack_.push_back(frame);
|
| 1160 |
|
| 1161 | log("co = %p", co);
|
| 1162 |
|
| 1163 | return RunFrame(frame);
|
| 1164 | }
|
| 1165 |
|
| 1166 | // Need a VM to be able to convert args to Cell?
|
| 1167 | Why func_print(const OHeap& heap, const Args& args, Rets* rets) {
|
| 1168 | Str s;
|
| 1169 | if (heap.AsStr(args[0], &s)) {
|
| 1170 | //printf("PRINTING\n");
|
| 1171 | fwrite(s.data, sizeof(char), s.len, stdout); // make sure to write NUL bytes!
|
| 1172 | puts("\n");
|
| 1173 |
|
| 1174 | // This is like Py_RETURN_NONE?
|
| 1175 | rets->push_back(0);
|
| 1176 | return Why::Not;
|
| 1177 | }
|
| 1178 |
|
| 1179 | // TODO: We should really call the str() constructor here, which will call
|
| 1180 | // __str__ on user-defined instances.
|
| 1181 | int64_t i;
|
| 1182 | if (heap.AsInt(args[0], &i)) {
|
| 1183 | printf("%ld\n", i);
|
| 1184 |
|
| 1185 | rets->push_back(0);
|
| 1186 | return Why::Not;
|
| 1187 | }
|
| 1188 |
|
| 1189 | // TODO: Set TypeError
|
| 1190 | // I guess you need the VM argument here.
|
| 1191 | return Why::Exception;
|
| 1192 | }
|
| 1193 |
|
| 1194 | int main(int argc, char **argv) {
|
| 1195 | if (argc == 0) {
|
| 1196 | log("Expected filename\n");
|
| 1197 | return 1;
|
| 1198 | }
|
| 1199 | FILE *f = fopen(argv[1], "rb");
|
| 1200 | if (!f) {
|
| 1201 | log("Error opening %s", argv[1]);
|
| 1202 | return 1;
|
| 1203 | }
|
| 1204 |
|
| 1205 | assert(sizeof(Cell) == 16);
|
| 1206 |
|
| 1207 | OHeap heap;
|
| 1208 | if (!Load(f, &heap)) {
|
| 1209 | log("Error loading '%s'", argv[1]);
|
| 1210 | return 1;
|
| 1211 | }
|
| 1212 |
|
| 1213 | VM vm(&heap);
|
| 1214 | vm.RunMain();
|
| 1215 | return 0;
|
| 1216 | }
|