| 1 | /*
|
| 2 | * Souffle - A Datalog Compiler
|
| 3 | * Copyright (c) 2021, The Souffle Developers. All rights reserved
|
| 4 | * Licensed under the Universal Permissive License v 1.0 as shown at:
|
| 5 | * - https://opensource.org/licenses/UPL
|
| 6 | * - <souffle root>/licenses/SOUFFLE-UPL.txt
|
| 7 | */
|
| 8 | #pragma once
|
| 9 |
|
| 10 | #include "ConcurrentInsertOnlyHashMap.h"
|
| 11 | #include "souffle/utility/ParallelUtil.h"
|
| 12 | #include <cassert>
|
| 13 | #include <cstring>
|
| 14 |
|
| 15 | namespace souffle {
|
| 16 |
|
| 17 | /**
|
| 18 | * A concurrent, almost lock-free associative datastructure that implements the
|
| 19 | * Flyweight pattern. Assigns a unique index to each inserted key. Elements
|
| 20 | * cannot be removed, the datastructure can only grow.
|
| 21 | *
|
| 22 | * The datastructure enables a configurable number of concurrent access lanes.
|
| 23 | * Access to the datastructure is lock-free between different lanes.
|
| 24 | * Concurrent accesses through the same lane is sequential.
|
| 25 | *
|
| 26 | * Growing the datastructure requires to temporarily lock all lanes to let a
|
| 27 | * single lane perform the growing operation. The global lock is amortized
|
| 28 | * thanks to an exponential growth strategy.
|
| 29 | *
|
| 30 | */
|
| 31 | template <class LanesPolicy, class Key, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>,
|
| 32 | class KeyFactory = details::Factory<Key>>
|
| 33 | class ConcurrentFlyweight {
|
| 34 | public:
|
| 35 | using lane_id = typename LanesPolicy::lane_id;
|
| 36 | using index_type = std::size_t;
|
| 37 | using key_type = Key;
|
| 38 | using value_type = std::pair<const Key, const index_type>;
|
| 39 | using pointer = const value_type*;
|
| 40 | using reference = const value_type&;
|
| 41 |
|
| 42 | private:
|
| 43 | // Effectively:
|
| 44 | // data slot_type = NONE | END | Idx index_type
|
| 45 | // The last two values in the domain of `index_type` are used to represent cases `NONE` and `END`
|
| 46 | // TODO: strong type-def wrap this to prevent implicit conversions
|
| 47 | using slot_type = index_type;
|
| 48 | static constexpr slot_type NONE = std::numeric_limits<slot_type>::max(); // special case: `std::nullopt`
|
| 49 | static constexpr slot_type END = NONE - 1; // special case: end iterator
|
| 50 | static constexpr slot_type SLOT_MAX = END; // +1 the largest non-special slot value
|
| 51 |
|
| 52 | static_assert(std::is_same_v<slot_type, index_type>,
|
| 53 | "conversion helpers assume they're the underlying type, "
|
| 54 | "with the last two values reserved for special cases");
|
| 55 | static_assert(std::is_unsigned_v<slot_type>);
|
| 56 |
|
| 57 | /// Converts from index to slot.
|
| 58 | static slot_type slot(const index_type I) {
|
| 59 | // not expected to happen. you'll run out of memory long before.
|
| 60 | assert(I < SLOT_MAX && "can't represent index in `slot_type` domain");
|
| 61 | return static_cast<slot_type>(I);
|
| 62 | }
|
| 63 |
|
| 64 | /// Converts from slot to index.
|
| 65 | static index_type index(const slot_type S) {
|
| 66 | assert(S < SLOT_MAX && "slot is sentinal value; can't convert to index !!");
|
| 67 | return static_cast<index_type>(S);
|
| 68 | }
|
| 69 |
|
| 70 | public:
|
| 71 | /// Iterator with concurrent access to the datastructure.
|
| 72 | struct Iterator {
|
| 73 | using iterator_category = std::input_iterator_tag;
|
| 74 | using value_type = ConcurrentFlyweight::value_type;
|
| 75 | using pointer = ConcurrentFlyweight::pointer;
|
| 76 | using reference = ConcurrentFlyweight::reference;
|
| 77 |
|
| 78 | private:
|
| 79 | const ConcurrentFlyweight* This;
|
| 80 |
|
| 81 | /// Access lane to the datastructure.
|
| 82 | lane_id Lane;
|
| 83 |
|
| 84 | /// Current slot.
|
| 85 | slot_type Slot;
|
| 86 |
|
| 87 | /// Next slot that might be unassigned.
|
| 88 | slot_type NextMaybeUnassignedSlot;
|
| 89 |
|
| 90 | /// Handle that owns the next slot that might be unassigned.
|
| 91 | slot_type NextMaybeUnassignedHandle = NONE;
|
| 92 |
|
| 93 | public:
|
| 94 | // The 'begin' iterator
|
| 95 | Iterator(const ConcurrentFlyweight* This, const lane_id H)
|
| 96 | : This(This), Lane(H), Slot(NONE), NextMaybeUnassignedSlot(0) {
|
| 97 | FindNextMaybeUnassignedSlot();
|
| 98 | MoveToNextAssignedSlot();
|
| 99 | }
|
| 100 |
|
| 101 | // The 'end' iterator
|
| 102 | Iterator(const ConcurrentFlyweight* This)
|
| 103 | : This(This), Lane(0), Slot(END), NextMaybeUnassignedSlot(END) {}
|
| 104 |
|
| 105 | // The iterator starting at slot I, using access lane H.
|
| 106 | Iterator(const ConcurrentFlyweight* This, const lane_id H, const index_type I)
|
| 107 | : This(This), Lane(H), Slot(slot(I)), NextMaybeUnassignedSlot(slot(I)) {
|
| 108 | FindNextMaybeUnassignedSlot();
|
| 109 | MoveToNextAssignedSlot();
|
| 110 | }
|
| 111 |
|
| 112 | Iterator(const Iterator& That)
|
| 113 | : This(That.This), Lane(That.Lane), Slot(That.Slot),
|
| 114 | NextMaybeUnassignedSlot(That.NextMaybeUnassignedSlot),
|
| 115 | NextMaybeUnassignedHandle(That.NextMaybeUnassignedHandle) {}
|
| 116 |
|
| 117 | Iterator(Iterator&& That)
|
| 118 | : This(That.This), Lane(That.Lane), Slot(That.Slot),
|
| 119 | NextMaybeUnassignedSlot(That.NextMaybeUnassignedSlot),
|
| 120 | NextMaybeUnassignedHandle(That.NextMaybeUnassignedHandle) {}
|
| 121 |
|
| 122 | Iterator& operator=(const Iterator& That) {
|
| 123 | This = That.This;
|
| 124 | Lane = That.Lane;
|
| 125 | Slot = That.Slot;
|
| 126 | NextMaybeUnassignedSlot = That.NextMaybeUnassignedSlot;
|
| 127 | NextMaybeUnassignedHandle = That.NextMaybeUnassignedHandle;
|
| 128 | }
|
| 129 |
|
| 130 | Iterator& operator=(Iterator&& That) {
|
| 131 | This = That.This;
|
| 132 | Lane = That.Lane;
|
| 133 | Slot = That.Slot;
|
| 134 | NextMaybeUnassignedSlot = That.NextMaybeUnassignedSlot;
|
| 135 | NextMaybeUnassignedHandle = That.NextMaybeUnassignedHandle;
|
| 136 | }
|
| 137 |
|
| 138 | reference operator*() const {
|
| 139 | const auto Guard = This->Lanes.guard(Lane);
|
| 140 | return *This->Slots[index(Slot)];
|
| 141 | }
|
| 142 |
|
| 143 | pointer operator->() const {
|
| 144 | const auto Guard = This->Lanes.guard(Lane);
|
| 145 | return This->Slots[index(Slot)];
|
| 146 | }
|
| 147 |
|
| 148 | Iterator& operator++() {
|
| 149 | MoveToNextAssignedSlot();
|
| 150 | return *this;
|
| 151 | }
|
| 152 |
|
| 153 | Iterator operator++(int) {
|
| 154 | Iterator Tmp = *this;
|
| 155 | ++(*this);
|
| 156 | return Tmp;
|
| 157 | }
|
| 158 |
|
| 159 | bool operator==(const Iterator& That) const {
|
| 160 | return (This == That.This) && (Slot == That.Slot);
|
| 161 | }
|
| 162 |
|
| 163 | bool operator!=(const Iterator& That) const {
|
| 164 | return (This != That.This) || (Slot != That.Slot);
|
| 165 | }
|
| 166 |
|
| 167 | private:
|
| 168 | /** Find next slot after Slot that is maybe unassigned. */
|
| 169 | void FindNextMaybeUnassignedSlot() {
|
| 170 | NextMaybeUnassignedSlot = END;
|
| 171 | for (lane_id I = 0; I < This->Lanes.lanes(); ++I) {
|
| 172 | const auto Lane = This->Lanes.guard(I);
|
| 173 | if ((Slot == NONE || This->Handles[I].NextSlot > Slot) &&
|
| 174 | This->Handles[I].NextSlot < NextMaybeUnassignedSlot) {
|
| 175 | NextMaybeUnassignedSlot = This->Handles[I].NextSlot;
|
| 176 | NextMaybeUnassignedHandle = I;
|
| 177 | }
|
| 178 | }
|
| 179 | if (NextMaybeUnassignedSlot == END) {
|
| 180 | NextMaybeUnassignedSlot = This->NextSlot.load(std::memory_order_acquire);
|
| 181 | NextMaybeUnassignedHandle = NONE;
|
| 182 | }
|
| 183 | }
|
| 184 |
|
| 185 | /**
|
| 186 | * Move Slot to next assigned slot and return true.
|
| 187 | * Otherwise the end is reached and Slot is assigned `END` and return false.
|
| 188 | */
|
| 189 | bool MoveToNextAssignedSlot() {
|
| 190 | static_assert(NONE == std::numeric_limits<slot_type>::max(),
|
| 191 | "required for wrap around to 0 for begin-iterator-scan");
|
| 192 | static_assert(NONE + 1 == 0, "required for wrap around to 0 for begin-iterator-scan");
|
| 193 | while (Slot != END) {
|
| 194 | assert(Slot + 1 < SLOT_MAX);
|
| 195 | if (Slot + 1 < NextMaybeUnassignedSlot) { // next unassigned slot not reached
|
| 196 | Slot = Slot + 1;
|
| 197 | return true;
|
| 198 | }
|
| 199 |
|
| 200 | if (NextMaybeUnassignedHandle == NONE) { // reaching end
|
| 201 | Slot = END;
|
| 202 | NextMaybeUnassignedSlot = END;
|
| 203 | NextMaybeUnassignedHandle = NONE;
|
| 204 | return false;
|
| 205 | }
|
| 206 |
|
| 207 | if (NextMaybeUnassignedHandle != NONE) { // maybe reaching the next unassigned slot
|
| 208 | This->Lanes.lock(NextMaybeUnassignedHandle);
|
| 209 | const bool IsAssigned = (Slot + 1 < This->Handles[NextMaybeUnassignedHandle].NextSlot);
|
| 210 | This->Lanes.unlock(NextMaybeUnassignedHandle);
|
| 211 | Slot = Slot + 1;
|
| 212 | FindNextMaybeUnassignedSlot();
|
| 213 | if (IsAssigned) {
|
| 214 | return true;
|
| 215 | }
|
| 216 | }
|
| 217 | }
|
| 218 | return false;
|
| 219 | }
|
| 220 | };
|
| 221 |
|
| 222 | using iterator = Iterator;
|
| 223 |
|
| 224 | /// Initialize the datastructure with the given capacity.
|
| 225 | ConcurrentFlyweight(const std::size_t LaneCount, const std::size_t InitialCapacity,
|
| 226 | const bool ReserveFirst, const Hash& hash = Hash(), const KeyEqual& key_equal = KeyEqual(),
|
| 227 | const KeyFactory& key_factory = KeyFactory())
|
| 228 | : Lanes(LaneCount), HandleCount(LaneCount),
|
| 229 | Mapping(LaneCount, InitialCapacity, hash, key_equal, key_factory) {
|
| 230 | Slots = std::make_unique<const value_type*[]>(InitialCapacity);
|
| 231 | Handles = std::make_unique<Handle[]>(HandleCount);
|
| 232 | NextSlot = (ReserveFirst ? 1 : 0);
|
| 233 | SlotCount = InitialCapacity;
|
| 234 | }
|
| 235 |
|
| 236 | /// Initialize the datastructure with a capacity of 8 elements.
|
| 237 | ConcurrentFlyweight(const std::size_t LaneCount, const bool ReserveFirst, const Hash& hash = Hash(),
|
| 238 | const KeyEqual& key_equal = KeyEqual(), const KeyFactory& key_factory = KeyFactory())
|
| 239 |
|
| 240 | : ConcurrentFlyweight(LaneCount, 8, ReserveFirst, hash, key_equal, key_factory) {}
|
| 241 |
|
| 242 | /// Initialize the datastructure with a capacity of 8 elements.
|
| 243 | ConcurrentFlyweight(const std::size_t LaneCount, const Hash& hash = Hash(),
|
| 244 | const KeyEqual& key_equal = KeyEqual(), const KeyFactory& key_factory = KeyFactory())
|
| 245 | : ConcurrentFlyweight(LaneCount, 8, false, hash, key_equal, key_factory) {}
|
| 246 |
|
| 247 | virtual ~ConcurrentFlyweight() {
|
| 248 | for (lane_id I = 0; I < HandleCount; ++I) {
|
| 249 | if (Handles[I].NextNode) {
|
| 250 | delete Handles[I].NextNode;
|
| 251 | }
|
| 252 | }
|
| 253 | }
|
| 254 |
|
| 255 | /**
|
| 256 | * Change the number of lanes and possibly grow the number of handles.
|
| 257 | * Do not use while threads are using this datastructure.
|
| 258 | */
|
| 259 | void setNumLanes(const std::size_t NumLanes) {
|
| 260 | if (NumLanes > HandleCount) {
|
| 261 | std::unique_ptr<Handle[]> NextHandles = std::make_unique<Handle[]>(NumLanes);
|
| 262 | std::copy(Handles.get(), Handles.get() + HandleCount, NextHandles.get());
|
| 263 | Handles.swap(NextHandles);
|
| 264 | HandleCount = NumLanes;
|
| 265 | }
|
| 266 | Mapping.setNumLanes(NumLanes);
|
| 267 | Lanes.setNumLanes(NumLanes);
|
| 268 | }
|
| 269 |
|
| 270 | /** Return a concurrent iterator on the first element. */
|
| 271 | Iterator begin(const lane_id H) const {
|
| 272 | return Iterator(this, H);
|
| 273 | }
|
| 274 |
|
| 275 | /** Return an iterator past the last element. */
|
| 276 | Iterator end() const {
|
| 277 | return Iterator(this);
|
| 278 | }
|
| 279 |
|
| 280 | /// Return true if the value is in the map.
|
| 281 | template <typename K>
|
| 282 | bool weakContains(const lane_id H, const K& X) const {
|
| 283 | return Mapping.weakContains(H, X);
|
| 284 | }
|
| 285 |
|
| 286 | /// Return the value associated with the given index.
|
| 287 | /// Assumption: the index is mapped in the datastructure.
|
| 288 | const Key& fetch(const lane_id H, const index_type Idx) const {
|
| 289 | const auto Lane = Lanes.guard(H);
|
| 290 | assert(Idx < SlotCount.load(std::memory_order_relaxed));
|
| 291 | return Slots[Idx]->first;
|
| 292 | }
|
| 293 |
|
| 294 | /// Return the pair of the index for the given value and a boolean
|
| 295 | /// indicating if the value was already present (false) or inserted by this handle (true).
|
| 296 | /// Insert the value and return a fresh index if the value is not
|
| 297 | /// yet indexed.
|
| 298 | template <class... Args>
|
| 299 | std::pair<index_type, bool> findOrInsert(const lane_id H, Args&&... Xs) {
|
| 300 | const auto Lane = Lanes.guard(H);
|
| 301 | node_type Node;
|
| 302 |
|
| 303 | slot_type Slot = Handles[H].NextSlot;
|
| 304 |
|
| 305 | // Getting the next insertion slot for the current lane may require
|
| 306 | // more than one attempts if the datastructure must grow and other
|
| 307 | // threads are waiting for the same lane @p H.
|
| 308 | while (true) {
|
| 309 | if (Slot == NONE) {
|
| 310 | // Reserve a slot for the lane, the datastructure might need to
|
| 311 | // grow before the slot memory location becomes available.
|
| 312 | Slot = NextSlot++;
|
| 313 | Handles[H].NextSlot = Slot;
|
| 314 | Handles[H].NextNode = Mapping.node(static_cast<index_type>(Slot));
|
| 315 | }
|
| 316 |
|
| 317 | if (Slot >= SlotCount.load(std::memory_order_relaxed)) {
|
| 318 | // The slot memory location is not yet available, try to
|
| 319 | // grow the datastructure. Other threads in other lanes might
|
| 320 | // be attempting to grow the datastructure concurrently.
|
| 321 | //
|
| 322 | // Anyway when this call returns the Slot memory location is
|
| 323 | // available.
|
| 324 | tryGrow(H);
|
| 325 |
|
| 326 | // Reload the Slot for the current lane since another thread
|
| 327 | // using the same lane may take-over the lane during tryGrow()
|
| 328 | // and consume the slot before the current thread is
|
| 329 | // rescheduled on the lane.
|
| 330 | Slot = Handles[H].NextSlot;
|
| 331 | } else {
|
| 332 | // From here the slot is known, allocated and available.
|
| 333 | break;
|
| 334 | }
|
| 335 | }
|
| 336 |
|
| 337 | Node = Handles[H].NextNode;
|
| 338 |
|
| 339 | // Insert key in the index in advance.
|
| 340 | Slots[Slot] = &Node->value();
|
| 341 |
|
| 342 | auto Res = Mapping.get(H, Node, std::forward<Args>(Xs)...);
|
| 343 | if (Res.second) {
|
| 344 | // Inserted by self, slot is consumed, clear the lane's state.
|
| 345 | Handles[H].clear();
|
| 346 | return std::make_pair(static_cast<index_type>(Slot), true);
|
| 347 | } else {
|
| 348 | // Inserted concurrently by another thread, clearing the slot is
|
| 349 | // not strictly needed but it avoids leaving a dangling pointer
|
| 350 | // there.
|
| 351 | //
|
| 352 | // The reserved slot and node remains in the lane state so that
|
| 353 | // they can be consumed by the next insertion operation on this
|
| 354 | // lane.
|
| 355 | Slots[Slot] = nullptr;
|
| 356 | return std::make_pair(Res.first->second, false);
|
| 357 | }
|
| 358 | }
|
| 359 |
|
| 360 | private:
|
| 361 | using map_type = ConcurrentInsertOnlyHashMap<LanesPolicy, Key, index_type, Hash, KeyEqual, KeyFactory>;
|
| 362 | using node_type = typename map_type::node_type;
|
| 363 |
|
| 364 | struct Handle {
|
| 365 | void clear() {
|
| 366 | NextSlot = NONE;
|
| 367 | NextNode = nullptr;
|
| 368 | }
|
| 369 |
|
| 370 | slot_type NextSlot = NONE;
|
| 371 | node_type NextNode = nullptr;
|
| 372 | };
|
| 373 |
|
| 374 | protected:
|
| 375 | // The concurrency manager.
|
| 376 | LanesPolicy Lanes;
|
| 377 |
|
| 378 | private:
|
| 379 | // Number of handles
|
| 380 | std::size_t HandleCount;
|
| 381 |
|
| 382 | // Handle for each concurrent lane.
|
| 383 | std::unique_ptr<Handle[]> Handles;
|
| 384 |
|
| 385 | // Slots[I] points to the value associated with index I.
|
| 386 | std::unique_ptr<const value_type*[]> Slots;
|
| 387 |
|
| 388 | // The map from keys to index.
|
| 389 | map_type Mapping;
|
| 390 |
|
| 391 | // Next available slot.
|
| 392 | std::atomic<slot_type> NextSlot;
|
| 393 |
|
| 394 | // Number of slots.
|
| 395 | std::atomic<slot_type> SlotCount;
|
| 396 |
|
| 397 | /// Grow the datastructure if needed.
|
| 398 | bool tryGrow(const lane_id H) {
|
| 399 | // This call may release and re-acquire the lane to
|
| 400 | // allow progress of a concurrent growing operation.
|
| 401 | //
|
| 402 | // It is possible that another thread is waiting to
|
| 403 | // enter the same lane, and that other thread might
|
| 404 | // take and leave the lane before the current thread
|
| 405 | // re-acquires it.
|
| 406 | Lanes.beforeLockAllBut(H);
|
| 407 |
|
| 408 | if (NextSlot < SlotCount) {
|
| 409 | // Current size is fine
|
| 410 | Lanes.beforeUnlockAllBut(H);
|
| 411 | return false;
|
| 412 | }
|
| 413 |
|
| 414 | Lanes.lockAllBut(H);
|
| 415 |
|
| 416 | { // safe section
|
| 417 | const std::size_t CurrentSize = SlotCount;
|
| 418 | std::size_t NewSize = (CurrentSize << 1); // double size policy
|
| 419 | while (NewSize < NextSlot) {
|
| 420 | NewSize <<= 1; // double size
|
| 421 | }
|
| 422 | std::unique_ptr<const value_type*[]> NewSlots = std::make_unique<const value_type*[]>(NewSize);
|
| 423 | std::memcpy(NewSlots.get(), Slots.get(), sizeof(const value_type*) * CurrentSize);
|
| 424 | Slots = std::move(NewSlots);
|
| 425 | SlotCount = NewSize;
|
| 426 | }
|
| 427 |
|
| 428 | Lanes.beforeUnlockAllBut(H);
|
| 429 | Lanes.unlockAllBut(H);
|
| 430 |
|
| 431 | return true;
|
| 432 | }
|
| 433 | };
|
| 434 |
|
| 435 | #ifdef _OPENMP
|
| 436 | /** A Flyweight datastructure with concurrent access specialized for OpenMP. */
|
| 437 | template <class Key, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>,
|
| 438 | class KeyFactory = details::Factory<Key>>
|
| 439 | class OmpFlyweight : protected ConcurrentFlyweight<ConcurrentLanes, Key, Hash, KeyEqual, KeyFactory> {
|
| 440 | public:
|
| 441 | using Base = ConcurrentFlyweight<ConcurrentLanes, Key, Hash, KeyEqual, KeyFactory>;
|
| 442 | using index_type = typename Base::index_type;
|
| 443 | using lane_id = typename Base::lane_id;
|
| 444 | using iterator = typename Base::iterator;
|
| 445 |
|
| 446 | explicit OmpFlyweight(const std::size_t LaneCount, const std::size_t InitialCapacity = 8,
|
| 447 | const bool ReserveFirst = false, const Hash& hash = Hash(),
|
| 448 | const KeyEqual& key_equal = KeyEqual(), const KeyFactory& key_factory = KeyFactory())
|
| 449 | : Base(LaneCount, InitialCapacity, ReserveFirst, hash, key_equal, key_factory) {}
|
| 450 |
|
| 451 | iterator begin() const {
|
| 452 | return Base::begin(Base::Lanes.threadLane());
|
| 453 | }
|
| 454 |
|
| 455 | iterator end() const {
|
| 456 | return Base::end();
|
| 457 | }
|
| 458 |
|
| 459 | template <typename K>
|
| 460 | bool weakContains(const K& X) const {
|
| 461 | return Base::weakContains(Base::Lanes.threadLane(), X);
|
| 462 | }
|
| 463 |
|
| 464 | const Key& fetch(const index_type Idx) const {
|
| 465 | return Base::fetch(Base::Lanes.threadLane(), Idx);
|
| 466 | }
|
| 467 |
|
| 468 | template <class... Args>
|
| 469 | std::pair<index_type, bool> findOrInsert(Args&&... Xs) {
|
| 470 | return Base::findOrInsert(Base::Lanes.threadLane(), std::forward<Args>(Xs)...);
|
| 471 | }
|
| 472 | };
|
| 473 | #endif
|
| 474 |
|
| 475 | /**
|
| 476 | * A Flyweight datastructure with sequential access.
|
| 477 | *
|
| 478 | * Reuse the concurrent flyweight with a single access handle.
|
| 479 | */
|
| 480 | template <class Key, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>,
|
| 481 | class KeyFactory = details::Factory<Key>>
|
| 482 | class SeqFlyweight : protected ConcurrentFlyweight<SeqConcurrentLanes, Key, Hash, KeyEqual, KeyFactory> {
|
| 483 | public:
|
| 484 | using Base = ConcurrentFlyweight<SeqConcurrentLanes, Key, Hash, KeyEqual, KeyFactory>;
|
| 485 | using index_type = typename Base::index_type;
|
| 486 | using lane_id = typename Base::lane_id;
|
| 487 | using iterator = typename Base::iterator;
|
| 488 |
|
| 489 | explicit SeqFlyweight(const std::size_t NumLanes, const std::size_t InitialCapacity = 8,
|
| 490 | const bool ReserveFirst = false, const Hash& hash = Hash(),
|
| 491 | const KeyEqual& key_equal = KeyEqual(), const KeyFactory& key_factory = KeyFactory())
|
| 492 | : Base(NumLanes, InitialCapacity, ReserveFirst, hash, key_equal, key_factory) {}
|
| 493 |
|
| 494 | iterator begin() const {
|
| 495 | return Base::begin(0);
|
| 496 | }
|
| 497 |
|
| 498 | iterator end() const {
|
| 499 | return Base::end();
|
| 500 | }
|
| 501 |
|
| 502 | template <typename K>
|
| 503 | bool weakContains(const K& X) const {
|
| 504 | return Base::weakContains(0, X);
|
| 505 | }
|
| 506 |
|
| 507 | const Key& fetch(const index_type Idx) const {
|
| 508 | return Base::fetch(0, Idx);
|
| 509 | }
|
| 510 |
|
| 511 | template <class... Args>
|
| 512 | std::pair<index_type, bool> findOrInsert(Args&&... Xs) {
|
| 513 | return Base::findOrInsert(0, std::forward<Args>(Xs)...);
|
| 514 | }
|
| 515 | };
|
| 516 |
|
| 517 | #ifdef _OPENMP
|
| 518 | template <class Key, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>,
|
| 519 | class KeyFactory = details::Factory<Key>>
|
| 520 | using FlyweightImpl = OmpFlyweight<Key, Hash, KeyEqual, KeyFactory>;
|
| 521 | #else
|
| 522 | template <class Key, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>,
|
| 523 | class KeyFactory = details::Factory<Key>>
|
| 524 | using FlyweightImpl = SeqFlyweight<Key, Hash, KeyEqual, KeyFactory>;
|
| 525 | #endif
|
| 526 |
|
| 527 | } // namespace souffle
|