mycpp

Coverage Report

Created: 2024-06-09 04:56

/home/uke/oil/mycpp/gc_list.h
Line
Count
Source (jump to first uncovered line)
1
#ifndef MYCPP_GC_LIST_H
2
#define MYCPP_GC_LIST_H
3
4
#include <string.h>  // memcpy
5
6
#include <algorithm>  // sort() is templated
7
8
#include "mycpp/common.h"  // DCHECK
9
#include "mycpp/comparators.h"
10
#include "mycpp/gc_alloc.h"     // Alloc
11
#include "mycpp/gc_builtins.h"  // ValueError
12
#include "mycpp/gc_slab.h"
13
14
// GlobalList is layout-compatible with List (unit tests assert this), and it
15
// can be a true C global (incurs zero startup time)
16
17
template <typename T, int N>
18
class GlobalList {
19
 public:
20
  int len_;
21
  int capacity_;
22
  GlobalSlab<T, N>* slab_;
23
};
24
25
#define GLOBAL_LIST(name, T, N, array)                                         \
26
  GcGlobal<GlobalSlab<T, N>> _slab_##name = {ObjHeader::Global(TypeTag::Slab), \
27
                                             {.items_ = array}};               \
28
  GcGlobal<GlobalList<T, N>> _list_##name = {                                  \
29
      ObjHeader::Global(TypeTag::List),                                        \
30
      {.len_ = N, .capacity_ = N, .slab_ = &_slab_##name.obj}};                \
31
  List<T>* name = reinterpret_cast<List<T>*>(&_list_##name.obj);
32
33
template <typename T>
34
class List {
35
 public:
36
377
  List() : len_(0), capacity_(0), slab_(nullptr) {
37
377
  }
_ZN4ListIiEC2Ev
Line
Count
Source
36
326
  List() : len_(0), capacity_(0), slab_(nullptr) {
37
326
  }
_ZN4ListIP6BigStrEC2Ev
Line
Count
Source
36
46
  List() : len_(0), capacity_(0), slab_(nullptr) {
37
46
  }
_ZN4ListIP6Tuple2IiiEEC2Ev
Line
Count
Source
36
2
  List() : len_(0), capacity_(0), slab_(nullptr) {
37
2
  }
_ZN4ListIbEC2Ev
Line
Count
Source
36
1
  List() : len_(0), capacity_(0), slab_(nullptr) {
37
1
  }
_ZN4ListIPiEC2Ev
Line
Count
Source
36
1
  List() : len_(0), capacity_(0), slab_(nullptr) {
37
1
  }
_ZN4ListIdEC2Ev
Line
Count
Source
36
1
  List() : len_(0), capacity_(0), slab_(nullptr) {
37
1
  }
38
39
  // Implements L[i]
40
  T at(int i);
41
42
  // returns index of the element
43
  int index(T element);
44
45
  // Implements L[i] = item
46
  void set(int i, T item);
47
48
  // L[begin:]
49
  List* slice(int begin);
50
51
  // L[begin:end]
52
  List* slice(int begin, int end);
53
54
  // Should we have a separate API that doesn't return it?
55
  // https://stackoverflow.com/questions/12600330/pop-back-return-value
56
  T pop();
57
58
  // Used in osh/word_parse.py to remove from front
59
  T pop(int i);
60
61
  // Remove the first occourence of x from the list.
62
  void remove(T x);
63
64
  void clear();
65
66
  // Used in osh/string_ops.py
67
  void reverse();
68
69
  // Templated function
70
  void sort();
71
72
  // Ensure that there's space for at LEAST this many items
73
  void reserve(int num_desired);
74
75
  // Append a single element to this list.
76
  void append(T item);
77
78
  // Extend this list with multiple elements.
79
  void extend(List<T>* other);
80
81
377
  static constexpr ObjHeader obj_header() {
82
377
    return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
83
377
  }
_ZN4ListIiE10obj_headerEv
Line
Count
Source
81
326
  static constexpr ObjHeader obj_header() {
82
326
    return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
83
326
  }
_ZN4ListIP6BigStrE10obj_headerEv
Line
Count
Source
81
46
  static constexpr ObjHeader obj_header() {
82
46
    return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
83
46
  }
_ZN4ListIP6Tuple2IiiEE10obj_headerEv
Line
Count
Source
81
2
  static constexpr ObjHeader obj_header() {
82
2
    return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
83
2
  }
_ZN4ListIbE10obj_headerEv
Line
Count
Source
81
1
  static constexpr ObjHeader obj_header() {
82
1
    return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
83
1
  }
_ZN4ListIPiE10obj_headerEv
Line
Count
Source
81
1
  static constexpr ObjHeader obj_header() {
82
1
    return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
83
1
  }
_ZN4ListIdE10obj_headerEv
Line
Count
Source
81
1
  static constexpr ObjHeader obj_header() {
82
1
    return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
83
1
  }
84
85
  int len_;       // number of entries
86
  int capacity_;  // max entries before resizing
87
88
  // The container may be resized, so this field isn't in-line.
89
  Slab<T>* slab_;
90
91
  // A list has one Slab pointer which we need to follow.
92
378
  static constexpr uint32_t field_mask() {
93
378
    return maskbit(offsetof(List, slab_));
94
378
  }
_ZN4ListIiE10field_maskEv
Line
Count
Source
92
327
  static constexpr uint32_t field_mask() {
93
327
    return maskbit(offsetof(List, slab_));
94
327
  }
_ZN4ListIP6BigStrE10field_maskEv
Line
Count
Source
92
46
  static constexpr uint32_t field_mask() {
93
46
    return maskbit(offsetof(List, slab_));
94
46
  }
_ZN4ListIP6Tuple2IiiEE10field_maskEv
Line
Count
Source
92
2
  static constexpr uint32_t field_mask() {
93
2
    return maskbit(offsetof(List, slab_));
94
2
  }
_ZN4ListIbE10field_maskEv
Line
Count
Source
92
1
  static constexpr uint32_t field_mask() {
93
1
    return maskbit(offsetof(List, slab_));
94
1
  }
_ZN4ListIPiE10field_maskEv
Line
Count
Source
92
1
  static constexpr uint32_t field_mask() {
93
1
    return maskbit(offsetof(List, slab_));
94
1
  }
_ZN4ListIdE10field_maskEv
Line
Count
Source
92
1
  static constexpr uint32_t field_mask() {
93
1
    return maskbit(offsetof(List, slab_));
94
1
  }
95
96
  DISALLOW_COPY_AND_ASSIGN(List)
97
98
  static_assert(sizeof(ObjHeader) % sizeof(T) == 0,
99
                "ObjHeader size should be multiple of item size");
100
  static constexpr int kHeaderFudge = sizeof(ObjHeader) / sizeof(T);
101
102
#if 0
103
  // 24-byte pool comes from very common List header, and Token
104
  static constexpr int kPoolBytes1 = 24 - sizeof(ObjHeader);
105
  static_assert(kPoolBytes1 % sizeof(T) == 0,
106
                "An integral number of items should fit in first pool");
107
  static constexpr int kNumItems1 = kPoolBytes1 / sizeof(T);
108
#endif
109
110
  // Matches mark_sweep_heap.h
111
  static constexpr int kPoolBytes2 = 48 - sizeof(ObjHeader);
112
  static_assert(kPoolBytes2 % sizeof(T) == 0,
113
                "An integral number of items should fit in second pool");
114
  static constexpr int kNumItems2 = kPoolBytes2 / sizeof(T);
115
116
#if 0
117
  static constexpr int kMinBytes2 = 128 - sizeof(ObjHeader);
118
  static_assert(kMinBytes2 % sizeof(T) == 0,
119
                "An integral number of items should fit");
120
  static constexpr int kMinItems2 = kMinBytes2 / sizeof(T);
121
#endif
122
123
  // Given the number of items desired, return the number items we should
124
  // reserve room for, according to our growth policy.
125
384
  int HowManyItems(int num_desired) {
126
    // Using the 24-byte pool leads to too much GC of tiny slab objects!  So
127
    // just use the larger 48 byte pool.
128
#if 0
129
    if (num_desired <= kNumItems1) {  // use full cell in pool 1
130
      return kNumItems1;
131
    }
132
#endif
133
384
    if (num_desired <= kNumItems2) {  // use full cell in pool 2
134
367
      return kNumItems2;
135
367
    }
136
#if 0
137
    if (num_desired <= kMinItems2) {  // 48 -> 128, not 48 -> 64
138
      return kMinItems2;
139
    }
140
#endif
141
142
    // Make sure the total allocation is a power of 2.  TODO: consider using
143
    // slightly less than power of 2, to account for malloc() headers, and
144
    // reduce fragmentation.
145
    // Example:
146
    // - ask for 11 integers
147
    // - round up 11+2 == 13 up to 16 items
148
    // - return 14 items
149
    // - 14 integers is 56 bytes, plus 8 byte GC header => 64 byte alloc.
150
17
    return RoundUp(num_desired + kHeaderFudge) - kHeaderFudge;
151
384
  }
_ZN4ListIiE12HowManyItemsEi
Line
Count
Source
125
334
  int HowManyItems(int num_desired) {
126
    // Using the 24-byte pool leads to too much GC of tiny slab objects!  So
127
    // just use the larger 48 byte pool.
128
#if 0
129
    if (num_desired <= kNumItems1) {  // use full cell in pool 1
130
      return kNumItems1;
131
    }
132
#endif
133
334
    if (num_desired <= kNumItems2) {  // use full cell in pool 2
134
322
      return kNumItems2;
135
322
    }
136
#if 0
137
    if (num_desired <= kMinItems2) {  // 48 -> 128, not 48 -> 64
138
      return kMinItems2;
139
    }
140
#endif
141
142
    // Make sure the total allocation is a power of 2.  TODO: consider using
143
    // slightly less than power of 2, to account for malloc() headers, and
144
    // reduce fragmentation.
145
    // Example:
146
    // - ask for 11 integers
147
    // - round up 11+2 == 13 up to 16 items
148
    // - return 14 items
149
    // - 14 integers is 56 bytes, plus 8 byte GC header => 64 byte alloc.
150
12
    return RoundUp(num_desired + kHeaderFudge) - kHeaderFudge;
151
334
  }
_ZN4ListIP6BigStrE12HowManyItemsEi
Line
Count
Source
125
46
  int HowManyItems(int num_desired) {
126
    // Using the 24-byte pool leads to too much GC of tiny slab objects!  So
127
    // just use the larger 48 byte pool.
128
#if 0
129
    if (num_desired <= kNumItems1) {  // use full cell in pool 1
130
      return kNumItems1;
131
    }
132
#endif
133
46
    if (num_desired <= kNumItems2) {  // use full cell in pool 2
134
41
      return kNumItems2;
135
41
    }
136
#if 0
137
    if (num_desired <= kMinItems2) {  // 48 -> 128, not 48 -> 64
138
      return kMinItems2;
139
    }
140
#endif
141
142
    // Make sure the total allocation is a power of 2.  TODO: consider using
143
    // slightly less than power of 2, to account for malloc() headers, and
144
    // reduce fragmentation.
145
    // Example:
146
    // - ask for 11 integers
147
    // - round up 11+2 == 13 up to 16 items
148
    // - return 14 items
149
    // - 14 integers is 56 bytes, plus 8 byte GC header => 64 byte alloc.
150
5
    return RoundUp(num_desired + kHeaderFudge) - kHeaderFudge;
151
46
  }
_ZN4ListIP6Tuple2IiiEE12HowManyItemsEi
Line
Count
Source
125
2
  int HowManyItems(int num_desired) {
126
    // Using the 24-byte pool leads to too much GC of tiny slab objects!  So
127
    // just use the larger 48 byte pool.
128
#if 0
129
    if (num_desired <= kNumItems1) {  // use full cell in pool 1
130
      return kNumItems1;
131
    }
132
#endif
133
2
    if (num_desired <= kNumItems2) {  // use full cell in pool 2
134
2
      return kNumItems2;
135
2
    }
136
#if 0
137
    if (num_desired <= kMinItems2) {  // 48 -> 128, not 48 -> 64
138
      return kMinItems2;
139
    }
140
#endif
141
142
    // Make sure the total allocation is a power of 2.  TODO: consider using
143
    // slightly less than power of 2, to account for malloc() headers, and
144
    // reduce fragmentation.
145
    // Example:
146
    // - ask for 11 integers
147
    // - round up 11+2 == 13 up to 16 items
148
    // - return 14 items
149
    // - 14 integers is 56 bytes, plus 8 byte GC header => 64 byte alloc.
150
0
    return RoundUp(num_desired + kHeaderFudge) - kHeaderFudge;
151
2
  }
_ZN4ListIbE12HowManyItemsEi
Line
Count
Source
125
1
  int HowManyItems(int num_desired) {
126
    // Using the 24-byte pool leads to too much GC of tiny slab objects!  So
127
    // just use the larger 48 byte pool.
128
#if 0
129
    if (num_desired <= kNumItems1) {  // use full cell in pool 1
130
      return kNumItems1;
131
    }
132
#endif
133
1
    if (num_desired <= kNumItems2) {  // use full cell in pool 2
134
1
      return kNumItems2;
135
1
    }
136
#if 0
137
    if (num_desired <= kMinItems2) {  // 48 -> 128, not 48 -> 64
138
      return kMinItems2;
139
    }
140
#endif
141
142
    // Make sure the total allocation is a power of 2.  TODO: consider using
143
    // slightly less than power of 2, to account for malloc() headers, and
144
    // reduce fragmentation.
145
    // Example:
146
    // - ask for 11 integers
147
    // - round up 11+2 == 13 up to 16 items
148
    // - return 14 items
149
    // - 14 integers is 56 bytes, plus 8 byte GC header => 64 byte alloc.
150
0
    return RoundUp(num_desired + kHeaderFudge) - kHeaderFudge;
151
1
  }
_ZN4ListIdE12HowManyItemsEi
Line
Count
Source
125
1
  int HowManyItems(int num_desired) {
126
    // Using the 24-byte pool leads to too much GC of tiny slab objects!  So
127
    // just use the larger 48 byte pool.
128
#if 0
129
    if (num_desired <= kNumItems1) {  // use full cell in pool 1
130
      return kNumItems1;
131
    }
132
#endif
133
1
    if (num_desired <= kNumItems2) {  // use full cell in pool 2
134
1
      return kNumItems2;
135
1
    }
136
#if 0
137
    if (num_desired <= kMinItems2) {  // 48 -> 128, not 48 -> 64
138
      return kMinItems2;
139
    }
140
#endif
141
142
    // Make sure the total allocation is a power of 2.  TODO: consider using
143
    // slightly less than power of 2, to account for malloc() headers, and
144
    // reduce fragmentation.
145
    // Example:
146
    // - ask for 11 integers
147
    // - round up 11+2 == 13 up to 16 items
148
    // - return 14 items
149
    // - 14 integers is 56 bytes, plus 8 byte GC header => 64 byte alloc.
150
0
    return RoundUp(num_desired + kHeaderFudge) - kHeaderFudge;
151
1
  }
152
};
153
154
// "Constructors" as free functions since we can't allocate within a
155
// constructor.  Allocation may cause garbage collection, which interferes with
156
// placement new.
157
158
// This is not really necessary, only syntactic sugar.
159
template <typename T>
160
316
List<T>* NewList() {
161
316
  return Alloc<List<T>>();
162
316
}
_Z7NewListIiEP4ListIT_Ev
Line
Count
Source
160
309
List<T>* NewList() {
161
309
  return Alloc<List<T>>();
162
309
}
_Z7NewListIP6BigStrEP4ListIT_Ev
Line
Count
Source
160
6
List<T>* NewList() {
161
6
  return Alloc<List<T>>();
162
6
}
_Z7NewListIPiEP4ListIT_Ev
Line
Count
Source
160
1
List<T>* NewList() {
161
1
  return Alloc<List<T>>();
162
1
}
163
164
// Literal ['foo', 'bar']
165
// This seems to allow better template argument type deduction than a
166
// constructor.
167
template <typename T>
168
38
List<T>* NewList(std::initializer_list<T> init) {
169
38
  auto self = Alloc<List<T>>();
170
171
38
  int n = init.size();
172
38
  self->reserve(n);
173
174
38
  int i = 0;
175
69
  for (auto item : init) {
176
69
    self->set(i, item);
177
69
    ++i;
178
69
  }
179
38
  self->len_ = n;
180
38
  return self;
181
38
}
_Z7NewListIiEP4ListIT_ESt16initializer_listIS1_E
Line
Count
Source
168
11
List<T>* NewList(std::initializer_list<T> init) {
169
11
  auto self = Alloc<List<T>>();
170
171
11
  int n = init.size();
172
11
  self->reserve(n);
173
174
11
  int i = 0;
175
47
  for (auto item : init) {
176
47
    self->set(i, item);
177
47
    ++i;
178
47
  }
179
11
  self->len_ = n;
180
11
  return self;
181
11
}
_Z7NewListIP6BigStrEP4ListIT_ESt16initializer_listIS3_E
Line
Count
Source
168
26
List<T>* NewList(std::initializer_list<T> init) {
169
26
  auto self = Alloc<List<T>>();
170
171
26
  int n = init.size();
172
26
  self->reserve(n);
173
174
26
  int i = 0;
175
26
  for (auto item : init) {
176
19
    self->set(i, item);
177
19
    ++i;
178
19
  }
179
26
  self->len_ = n;
180
26
  return self;
181
26
}
_Z7NewListIdEP4ListIT_ESt16initializer_listIS1_E
Line
Count
Source
168
1
List<T>* NewList(std::initializer_list<T> init) {
169
1
  auto self = Alloc<List<T>>();
170
171
1
  int n = init.size();
172
1
  self->reserve(n);
173
174
1
  int i = 0;
175
3
  for (auto item : init) {
176
3
    self->set(i, item);
177
3
    ++i;
178
3
  }
179
1
  self->len_ = n;
180
1
  return self;
181
1
}
182
183
// ['foo'] * 3
184
template <typename T>
185
4
List<T>* NewList(T item, int times) {
186
4
  auto self = Alloc<List<T>>();
187
188
4
  self->reserve(times);
189
4
  self->len_ = times;
190
16
  for (int i = 0; i < times; ++i) {
191
12
    self->set(i, item);
192
12
  }
193
4
  return self;
194
4
}
_Z7NewListIP6BigStrEP4ListIT_ES3_i
Line
Count
Source
185
1
List<T>* NewList(T item, int times) {
186
1
  auto self = Alloc<List<T>>();
187
188
1
  self->reserve(times);
189
1
  self->len_ = times;
190
4
  for (int i = 0; i < times; ++i) {
191
3
    self->set(i, item);
192
3
  }
193
1
  return self;
194
1
}
_Z7NewListIbEP4ListIT_ES1_i
Line
Count
Source
185
1
List<T>* NewList(T item, int times) {
186
1
  auto self = Alloc<List<T>>();
187
188
1
  self->reserve(times);
189
1
  self->len_ = times;
190
4
  for (int i = 0; i < times; ++i) {
191
3
    self->set(i, item);
192
3
  }
193
1
  return self;
194
1
}
_Z7NewListIiEP4ListIT_ES1_i
Line
Count
Source
185
2
List<T>* NewList(T item, int times) {
186
2
  auto self = Alloc<List<T>>();
187
188
2
  self->reserve(times);
189
2
  self->len_ = times;
190
8
  for (int i = 0; i < times; ++i) {
191
6
    self->set(i, item);
192
6
  }
193
2
  return self;
194
2
}
195
196
template <typename T>
197
1.46k
void List<T>::append(T item) {
198
1.46k
  reserve(len_ + 1);
199
1.46k
  slab_->items_[len_] = item;
200
1.46k
  ++len_;
201
1.46k
}
_ZN4ListIP6BigStrE6appendES1_
Line
Count
Source
197
103
void List<T>::append(T item) {
198
103
  reserve(len_ + 1);
199
103
  slab_->items_[len_] = item;
200
103
  ++len_;
201
103
}
_ZN4ListIiE6appendEi
Line
Count
Source
197
1.35k
void List<T>::append(T item) {
198
1.35k
  reserve(len_ + 1);
199
1.35k
  slab_->items_[len_] = item;
200
1.35k
  ++len_;
201
1.35k
}
_ZN4ListIP6Tuple2IiiEE6appendES2_
Line
Count
Source
197
4
void List<T>::append(T item) {
198
4
  reserve(len_ + 1);
199
4
  slab_->items_[len_] = item;
200
4
  ++len_;
201
4
}
202
203
template <typename T>
204
2.06k
int len(const List<T>* L) {
205
2.06k
  return L->len_;
206
2.06k
}
_Z3lenIiEiPK4ListIT_E
Line
Count
Source
204
1.97k
int len(const List<T>* L) {
205
1.97k
  return L->len_;
206
1.97k
}
_Z3lenIP6BigStrEiPK4ListIT_E
Line
Count
Source
204
83
int len(const List<T>* L) {
205
83
  return L->len_;
206
83
}
_Z3lenIP6Tuple2IiiEEiPK4ListIT_E
Line
Count
Source
204
2
int len(const List<T>* L) {
205
2
  return L->len_;
206
2
}
_Z3lenIbEiPK4ListIT_E
Line
Count
Source
204
1
int len(const List<T>* L) {
205
1
  return L->len_;
206
1
}
_Z3lenIdEiPK4ListIT_E
Line
Count
Source
204
2
int len(const List<T>* L) {
205
2
  return L->len_;
206
2
}
207
208
template <typename T>
209
List<T>* list_repeat(T item, int times);
210
211
template <typename T>
212
inline bool list_contains(List<T>* haystack, T needle);
213
214
template <typename K, typename V>
215
class Dict;  // forward decl
216
217
template <typename V>
218
List<BigStr*>* sorted(Dict<BigStr*, V>* d);
219
220
template <typename T>
221
List<T>* sorted(List<T>* l);
222
223
// L[begin:]
224
template <typename T>
225
301
List<T>* List<T>::slice(int begin) {
226
301
  return slice(begin, len_);
227
301
}
228
229
// L[begin:end]
230
template <typename T>
231
303
List<T>* List<T>::slice(int begin, int end) {
232
303
  SLICE_ADJUST(begin, end, len_);
233
234
303
  DCHECK(0 <= begin && begin <= len_);
235
303
  DCHECK(0 <= end && end <= len_);
236
237
0
  int new_len = end - begin;
238
303
  DCHECK(0 <= new_len && new_len <= len_);
239
240
0
  List<T>* result = NewList<T>();
241
303
  result->reserve(new_len);
242
243
  // Faster than append() in a loop
244
303
  memcpy(result->slab_->items_, slab_->items_ + begin, new_len * sizeof(T));
245
303
  result->len_ = new_len;
246
247
303
  return result;
248
303
}
249
250
// Ensure that there's space for a number of items
251
template <typename T>
252
1.82k
void List<T>::reserve(int num_desired) {
253
  // log("reserve capacity = %d, n = %d", capacity_, n);
254
255
  // Don't do anything if there's already enough space.
256
1.82k
  if (capacity_ >= num_desired) {
257
1.43k
    return;
258
1.43k
  }
259
260
  // Slabs should be a total of 2^N bytes.  kCapacityAdjust is the number of
261
  // items that the 8 byte header takes up: 1 for List<T*>, and 2 for
262
  // List<int>.
263
  //
264
  // Example: the user reserves space for 3 integers.  The minimum number of
265
  // items would be 5, which is rounded up to 8.  Subtract 2 again, giving 6,
266
  // which leads to 8 + 6*4 = 32 byte Slab.
267
268
384
  capacity_ = HowManyItems(num_desired);
269
384
  auto new_slab = NewSlab<T>(capacity_);
270
271
384
  if (len_ > 0) {
272
    // log("Copying %d bytes", len_ * sizeof(T));
273
13
    memcpy(new_slab->items_, slab_->items_, len_ * sizeof(T));
274
13
  }
275
384
  slab_ = new_slab;
276
384
}
_ZN4ListIiE7reserveEi
Line
Count
Source
252
1.67k
void List<T>::reserve(int num_desired) {
253
  // log("reserve capacity = %d, n = %d", capacity_, n);
254
255
  // Don't do anything if there's already enough space.
256
1.67k
  if (capacity_ >= num_desired) {
257
1.34k
    return;
258
1.34k
  }
259
260
  // Slabs should be a total of 2^N bytes.  kCapacityAdjust is the number of
261
  // items that the 8 byte header takes up: 1 for List<T*>, and 2 for
262
  // List<int>.
263
  //
264
  // Example: the user reserves space for 3 integers.  The minimum number of
265
  // items would be 5, which is rounded up to 8.  Subtract 2 again, giving 6,
266
  // which leads to 8 + 6*4 = 32 byte Slab.
267
268
334
  capacity_ = HowManyItems(num_desired);
269
334
  auto new_slab = NewSlab<T>(capacity_);
270
271
334
  if (len_ > 0) {
272
    // log("Copying %d bytes", len_ * sizeof(T));
273
9
    memcpy(new_slab->items_, slab_->items_, len_ * sizeof(T));
274
9
  }
275
334
  slab_ = new_slab;
276
334
}
_ZN4ListIP6BigStrE7reserveEi
Line
Count
Source
252
137
void List<T>::reserve(int num_desired) {
253
  // log("reserve capacity = %d, n = %d", capacity_, n);
254
255
  // Don't do anything if there's already enough space.
256
137
  if (capacity_ >= num_desired) {
257
91
    return;
258
91
  }
259
260
  // Slabs should be a total of 2^N bytes.  kCapacityAdjust is the number of
261
  // items that the 8 byte header takes up: 1 for List<T*>, and 2 for
262
  // List<int>.
263
  //
264
  // Example: the user reserves space for 3 integers.  The minimum number of
265
  // items would be 5, which is rounded up to 8.  Subtract 2 again, giving 6,
266
  // which leads to 8 + 6*4 = 32 byte Slab.
267
268
46
  capacity_ = HowManyItems(num_desired);
269
46
  auto new_slab = NewSlab<T>(capacity_);
270
271
46
  if (len_ > 0) {
272
    // log("Copying %d bytes", len_ * sizeof(T));
273
4
    memcpy(new_slab->items_, slab_->items_, len_ * sizeof(T));
274
4
  }
275
46
  slab_ = new_slab;
276
46
}
_ZN4ListIP6Tuple2IiiEE7reserveEi
Line
Count
Source
252
4
void List<T>::reserve(int num_desired) {
253
  // log("reserve capacity = %d, n = %d", capacity_, n);
254
255
  // Don't do anything if there's already enough space.
256
4
  if (capacity_ >= num_desired) {
257
2
    return;
258
2
  }
259
260
  // Slabs should be a total of 2^N bytes.  kCapacityAdjust is the number of
261
  // items that the 8 byte header takes up: 1 for List<T*>, and 2 for
262
  // List<int>.
263
  //
264
  // Example: the user reserves space for 3 integers.  The minimum number of
265
  // items would be 5, which is rounded up to 8.  Subtract 2 again, giving 6,
266
  // which leads to 8 + 6*4 = 32 byte Slab.
267
268
2
  capacity_ = HowManyItems(num_desired);
269
2
  auto new_slab = NewSlab<T>(capacity_);
270
271
2
  if (len_ > 0) {
272
    // log("Copying %d bytes", len_ * sizeof(T));
273
0
    memcpy(new_slab->items_, slab_->items_, len_ * sizeof(T));
274
0
  }
275
2
  slab_ = new_slab;
276
2
}
_ZN4ListIbE7reserveEi
Line
Count
Source
252
1
void List<T>::reserve(int num_desired) {
253
  // log("reserve capacity = %d, n = %d", capacity_, n);
254
255
  // Don't do anything if there's already enough space.
256
1
  if (capacity_ >= num_desired) {
257
0
    return;
258
0
  }
259
260
  // Slabs should be a total of 2^N bytes.  kCapacityAdjust is the number of
261
  // items that the 8 byte header takes up: 1 for List<T*>, and 2 for
262
  // List<int>.
263
  //
264
  // Example: the user reserves space for 3 integers.  The minimum number of
265
  // items would be 5, which is rounded up to 8.  Subtract 2 again, giving 6,
266
  // which leads to 8 + 6*4 = 32 byte Slab.
267
268
1
  capacity_ = HowManyItems(num_desired);
269
1
  auto new_slab = NewSlab<T>(capacity_);
270
271
1
  if (len_ > 0) {
272
    // log("Copying %d bytes", len_ * sizeof(T));
273
0
    memcpy(new_slab->items_, slab_->items_, len_ * sizeof(T));
274
0
  }
275
1
  slab_ = new_slab;
276
1
}
_ZN4ListIdE7reserveEi
Line
Count
Source
252
1
void List<T>::reserve(int num_desired) {
253
  // log("reserve capacity = %d, n = %d", capacity_, n);
254
255
  // Don't do anything if there's already enough space.
256
1
  if (capacity_ >= num_desired) {
257
0
    return;
258
0
  }
259
260
  // Slabs should be a total of 2^N bytes.  kCapacityAdjust is the number of
261
  // items that the 8 byte header takes up: 1 for List<T*>, and 2 for
262
  // List<int>.
263
  //
264
  // Example: the user reserves space for 3 integers.  The minimum number of
265
  // items would be 5, which is rounded up to 8.  Subtract 2 again, giving 6,
266
  // which leads to 8 + 6*4 = 32 byte Slab.
267
268
1
  capacity_ = HowManyItems(num_desired);
269
1
  auto new_slab = NewSlab<T>(capacity_);
270
271
1
  if (len_ > 0) {
272
    // log("Copying %d bytes", len_ * sizeof(T));
273
0
    memcpy(new_slab->items_, slab_->items_, len_ * sizeof(T));
274
0
  }
275
1
  slab_ = new_slab;
276
1
}
277
278
// Implements L[i] = item
279
template <typename T>
280
104
void List<T>::set(int i, T item) {
281
104
  if (i < 0) {
282
0
    i = len_ + i;
283
0
  }
284
285
104
  DCHECK(i >= 0);
286
104
  DCHECK(i < capacity_);
287
288
0
  slab_->items_[i] = item;
289
104
}
_ZN4ListIiE3setEii
Line
Count
Source
280
70
void List<T>::set(int i, T item) {
281
70
  if (i < 0) {
282
0
    i = len_ + i;
283
0
  }
284
285
70
  DCHECK(i >= 0);
286
70
  DCHECK(i < capacity_);
287
288
0
  slab_->items_[i] = item;
289
70
}
_ZN4ListIP6BigStrE3setEiS1_
Line
Count
Source
280
28
void List<T>::set(int i, T item) {
281
28
  if (i < 0) {
282
0
    i = len_ + i;
283
0
  }
284
285
28
  DCHECK(i >= 0);
286
28
  DCHECK(i < capacity_);
287
288
0
  slab_->items_[i] = item;
289
28
}
_ZN4ListIbE3setEib
Line
Count
Source
280
3
void List<T>::set(int i, T item) {
281
3
  if (i < 0) {
282
0
    i = len_ + i;
283
0
  }
284
285
3
  DCHECK(i >= 0);
286
3
  DCHECK(i < capacity_);
287
288
0
  slab_->items_[i] = item;
289
3
}
_ZN4ListIdE3setEid
Line
Count
Source
280
3
void List<T>::set(int i, T item) {
281
3
  if (i < 0) {
282
0
    i = len_ + i;
283
0
  }
284
285
3
  DCHECK(i >= 0);
286
3
  DCHECK(i < capacity_);
287
288
0
  slab_->items_[i] = item;
289
3
}
290
291
// Implements L[i]
292
template <typename T>
293
277
T List<T>::at(int i) {
294
277
  if (i < 0) {
295
0
    int j = len_ + i;
296
0
    if (j >= len_ || j < 0) {
297
0
      throw Alloc<IndexError>();
298
0
    }
299
0
    return slab_->items_[j];
300
0
  }
301
302
277
  if (i >= len_ || i < 0) {
303
0
    throw Alloc<IndexError>();
304
0
  }
305
277
  return slab_->items_[i];
306
277
}
_ZN4ListIiE2atEi
Line
Count
Source
293
132
T List<T>::at(int i) {
294
132
  if (i < 0) {
295
0
    int j = len_ + i;
296
0
    if (j >= len_ || j < 0) {
297
0
      throw Alloc<IndexError>();
298
0
    }
299
0
    return slab_->items_[j];
300
0
  }
301
302
132
  if (i >= len_ || i < 0) {
303
0
    throw Alloc<IndexError>();
304
0
  }
305
132
  return slab_->items_[i];
306
132
}
_ZN4ListIP6BigStrE2atEi
Line
Count
Source
293
139
T List<T>::at(int i) {
294
139
  if (i < 0) {
295
0
    int j = len_ + i;
296
0
    if (j >= len_ || j < 0) {
297
0
      throw Alloc<IndexError>();
298
0
    }
299
0
    return slab_->items_[j];
300
0
  }
301
302
139
  if (i >= len_ || i < 0) {
303
0
    throw Alloc<IndexError>();
304
0
  }
305
139
  return slab_->items_[i];
306
139
}
_ZN4ListIbE2atEi
Line
Count
Source
293
2
T List<T>::at(int i) {
294
2
  if (i < 0) {
295
0
    int j = len_ + i;
296
0
    if (j >= len_ || j < 0) {
297
0
      throw Alloc<IndexError>();
298
0
    }
299
0
    return slab_->items_[j];
300
0
  }
301
302
2
  if (i >= len_ || i < 0) {
303
0
    throw Alloc<IndexError>();
304
0
  }
305
2
  return slab_->items_[i];
306
2
}
_ZN4ListIdE2atEi
Line
Count
Source
293
4
T List<T>::at(int i) {
294
4
  if (i < 0) {
295
0
    int j = len_ + i;
296
0
    if (j >= len_ || j < 0) {
297
0
      throw Alloc<IndexError>();
298
0
    }
299
0
    return slab_->items_[j];
300
0
  }
301
302
4
  if (i >= len_ || i < 0) {
303
0
    throw Alloc<IndexError>();
304
0
  }
305
4
  return slab_->items_[i];
306
4
}
307
308
// L.index(i) -- Python method
309
template <typename T>
310
4
int List<T>::index(T value) {
311
4
  int element_count = len(this);
312
9
  for (int i = 0; i < element_count; i++) {
313
8
    if (are_equal(slab_->items_[i], value)) {
314
3
      return i;
315
3
    }
316
8
  }
317
1
  throw Alloc<ValueError>();
318
4
}
319
320
// Should we have a separate API that doesn't return it?
321
// https://stackoverflow.com/questions/12600330/pop-back-return-value
322
template <typename T>
323
2
T List<T>::pop() {
324
2
  if (len_ == 0) {
325
0
    throw Alloc<IndexError>();
326
0
  }
327
2
  len_--;
328
2
  T result = slab_->items_[len_];
329
2
  slab_->items_[len_] = 0;  // zero for GC scan
330
2
  return result;
331
2
}
_ZN4ListIiE3popEv
Line
Count
Source
323
1
T List<T>::pop() {
324
1
  if (len_ == 0) {
325
0
    throw Alloc<IndexError>();
326
0
  }
327
1
  len_--;
328
1
  T result = slab_->items_[len_];
329
1
  slab_->items_[len_] = 0;  // zero for GC scan
330
1
  return result;
331
1
}
_ZN4ListIP6BigStrE3popEv
Line
Count
Source
323
1
T List<T>::pop() {
324
1
  if (len_ == 0) {
325
0
    throw Alloc<IndexError>();
326
0
  }
327
1
  len_--;
328
1
  T result = slab_->items_[len_];
329
1
  slab_->items_[len_] = 0;  // zero for GC scan
330
1
  return result;
331
1
}
332
333
// Used in osh/word_parse.py to remove from front
334
template <typename T>
335
5
T List<T>::pop(int i) {
336
5
  if (len_ < i) {
337
0
    throw Alloc<IndexError>();
338
0
  }
339
340
5
  T result = at(i);
341
5
  len_--;
342
343
  // Shift everything by one
344
5
  memmove(slab_->items_ + i, slab_->items_ + (i + 1), len_ * sizeof(T));
345
346
  /*
347
  for (int j = 0; j < len_; j++) {
348
    slab_->items_[j] = slab_->items_[j+1];
349
  }
350
  */
351
352
5
  slab_->items_[len_] = 0;  // zero for GC scan
353
5
  return result;
354
5
}
355
356
template <typename T>
357
3
void List<T>::remove(T x) {
358
3
  int idx = this->index(x);
359
3
  this->pop(idx);  // unused
360
3
}
361
362
template <typename T>
363
2
void List<T>::clear() {
364
2
  if (slab_) {
365
1
    memset(slab_->items_, 0, len_ * sizeof(T));  // zero for GC scan
366
1
  }
367
2
  len_ = 0;
368
2
}
_ZN4ListIiE5clearEv
Line
Count
Source
363
1
void List<T>::clear() {
364
1
  if (slab_) {
365
1
    memset(slab_->items_, 0, len_ * sizeof(T));  // zero for GC scan
366
1
  }
367
1
  len_ = 0;
368
1
}
_ZN4ListIPiE5clearEv
Line
Count
Source
363
1
void List<T>::clear() {
364
1
  if (slab_) {
365
0
    memset(slab_->items_, 0, len_ * sizeof(T));  // zero for GC scan
366
0
  }
367
1
  len_ = 0;
368
1
}
369
370
// Used in osh/string_ops.py
371
template <typename T>
372
4
void List<T>::reverse() {
373
8
  for (int i = 0; i < len_ / 2; ++i) {
374
    // log("swapping %d and %d", i, n-i);
375
4
    T tmp = slab_->items_[i];
376
4
    int j = len_ - 1 - i;
377
4
    slab_->items_[i] = slab_->items_[j];
378
4
    slab_->items_[j] = tmp;
379
4
  }
380
4
}
381
382
// Extend this list with multiple elements.
383
template <typename T>
384
6
void List<T>::extend(List<T>* other) {
385
6
  int n = other->len_;
386
6
  int new_len = len_ + n;
387
6
  reserve(new_len);
388
389
24
  for (int i = 0; i < n; ++i) {
390
18
    set(len_ + i, other->slab_->items_[i]);
391
18
  }
392
6
  len_ = new_len;
393
6
}
_ZN4ListIiE6extendEPS0_
Line
Count
Source
384
5
void List<T>::extend(List<T>* other) {
385
5
  int n = other->len_;
386
5
  int new_len = len_ + n;
387
5
  reserve(new_len);
388
389
20
  for (int i = 0; i < n; ++i) {
390
15
    set(len_ + i, other->slab_->items_[i]);
391
15
  }
392
5
  len_ = new_len;
393
5
}
_ZN4ListIP6BigStrE6extendEPS2_
Line
Count
Source
384
1
void List<T>::extend(List<T>* other) {
385
1
  int n = other->len_;
386
1
  int new_len = len_ + n;
387
1
  reserve(new_len);
388
389
4
  for (int i = 0; i < n; ++i) {
390
3
    set(len_ + i, other->slab_->items_[i]);
391
3
  }
392
1
  len_ = new_len;
393
1
}
394
395
17
inline bool _cmp(BigStr* a, BigStr* b) {
396
17
  return mylib::str_cmp(a, b) < 0;
397
17
}
398
399
template <typename T>
400
4
void List<T>::sort() {
401
4
  std::sort(slab_->items_, slab_->items_ + len_, _cmp);
402
4
}
403
404
// TODO: mycpp can just generate the constructor instead?
405
// e.g. [None] * 3
406
template <typename T>
407
2
List<T>* list_repeat(T item, int times) {
408
2
  return NewList<T>(item, times);
409
2
}
_Z11list_repeatIP6BigStrEP4ListIT_ES3_i
Line
Count
Source
407
1
List<T>* list_repeat(T item, int times) {
408
1
  return NewList<T>(item, times);
409
1
}
_Z11list_repeatIbEP4ListIT_ES1_i
Line
Count
Source
407
1
List<T>* list_repeat(T item, int times) {
408
1
  return NewList<T>(item, times);
409
1
}
410
411
// e.g. 'a' in ['a', 'b', 'c']
412
template <typename T>
413
9
inline bool list_contains(List<T>* haystack, T needle) {
414
9
  int n = len(haystack);
415
22
  for (int i = 0; i < n; ++i) {
416
18
    if (are_equal(haystack->at(i), needle)) {
417
5
      return true;
418
5
    }
419
18
  }
420
4
  return false;
421
9
}
_Z13list_containsIP6BigStrEbP4ListIT_ES3_
Line
Count
Source
413
5
inline bool list_contains(List<T>* haystack, T needle) {
414
5
  int n = len(haystack);
415
12
  for (int i = 0; i < n; ++i) {
416
10
    if (are_equal(haystack->at(i), needle)) {
417
3
      return true;
418
3
    }
419
10
  }
420
2
  return false;
421
5
}
_Z13list_containsIiEbP4ListIT_ES1_
Line
Count
Source
413
2
inline bool list_contains(List<T>* haystack, T needle) {
414
2
  int n = len(haystack);
415
5
  for (int i = 0; i < n; ++i) {
416
4
    if (are_equal(haystack->at(i), needle)) {
417
1
      return true;
418
1
    }
419
4
  }
420
1
  return false;
421
2
}
_Z13list_containsIdEbP4ListIT_ES1_
Line
Count
Source
413
2
inline bool list_contains(List<T>* haystack, T needle) {
414
2
  int n = len(haystack);
415
5
  for (int i = 0; i < n; ++i) {
416
4
    if (are_equal(haystack->at(i), needle)) {
417
1
      return true;
418
1
    }
419
4
  }
420
1
  return false;
421
2
}
422
423
template <typename V>
424
1
List<BigStr*>* sorted(Dict<BigStr*, V>* d) {
425
1
  auto keys = d->keys();
426
1
  keys->sort();
427
1
  return keys;
428
1
}
429
430
template <typename T>
431
1
List<T>* sorted(List<T>* l) {
432
1
  auto ret = list(l);
433
1
  ret->sort();
434
1
  return ret;
435
1
}
436
437
// list(L) copies the list
438
template <typename T>
439
3
List<T>* list(List<T>* other) {
440
3
  auto result = NewList<T>();
441
3
  result->extend(other);
442
3
  return result;
443
3
}
_Z4listIiEP4ListIT_ES3_
Line
Count
Source
439
2
List<T>* list(List<T>* other) {
440
2
  auto result = NewList<T>();
441
2
  result->extend(other);
442
2
  return result;
443
2
}
_Z4listIP6BigStrEP4ListIT_ES5_
Line
Count
Source
439
1
List<T>* list(List<T>* other) {
440
1
  auto result = NewList<T>();
441
1
  result->extend(other);
442
1
  return result;
443
1
}
444
445
template <class T>
446
class ListIter {
447
 public:
448
17
  explicit ListIter(List<T>* L) : L_(L), i_(0) {
449
    // Cheney only: L_ could be moved during iteration.
450
    // gHeap.PushRoot(reinterpret_cast<RawObject**>(&L_));
451
17
  }
_ZN8ListIterIP6Tuple2IiiEEC2EP4ListIS2_E
Line
Count
Source
448
2
  explicit ListIter(List<T>* L) : L_(L), i_(0) {
449
    // Cheney only: L_ could be moved during iteration.
450
    // gHeap.PushRoot(reinterpret_cast<RawObject**>(&L_));
451
2
  }
_ZN8ListIterIiEC2EP4ListIiE
Line
Count
Source
448
3
  explicit ListIter(List<T>* L) : L_(L), i_(0) {
449
    // Cheney only: L_ could be moved during iteration.
450
    // gHeap.PushRoot(reinterpret_cast<RawObject**>(&L_));
451
3
  }
_ZN8ListIterIP6BigStrEC2EP4ListIS1_E
Line
Count
Source
448
12
  explicit ListIter(List<T>* L) : L_(L), i_(0) {
449
    // Cheney only: L_ could be moved during iteration.
450
    // gHeap.PushRoot(reinterpret_cast<RawObject**>(&L_));
451
12
  }
452
453
18
  ~ListIter() {
454
    // gHeap.PopRoot();
455
18
  }
_ZN8ListIterIP6Tuple2IiiEED2Ev
Line
Count
Source
453
2
  ~ListIter() {
454
    // gHeap.PopRoot();
455
2
  }
_ZN8ListIterIiED2Ev
Line
Count
Source
453
4
  ~ListIter() {
454
    // gHeap.PopRoot();
455
4
  }
_ZN8ListIterIP6BigStrED2Ev
Line
Count
Source
453
12
  ~ListIter() {
454
    // gHeap.PopRoot();
455
12
  }
456
55
  void Next() {
457
55
    i_++;
458
55
  }
_ZN8ListIterIP6Tuple2IiiEE4NextEv
Line
Count
Source
456
4
  void Next() {
457
4
    i_++;
458
4
  }
_ZN8ListIterIiE4NextEv
Line
Count
Source
456
16
  void Next() {
457
16
    i_++;
458
16
  }
_ZN8ListIterIP6BigStrE4NextEv
Line
Count
Source
456
35
  void Next() {
457
35
    i_++;
458
35
  }
459
71
  bool Done() {
460
    // "unsigned size_t was a mistake"
461
71
    return i_ >= static_cast<int>(L_->len_);
462
71
  }
_ZN8ListIterIP6Tuple2IiiEE4DoneEv
Line
Count
Source
459
6
  bool Done() {
460
    // "unsigned size_t was a mistake"
461
6
    return i_ >= static_cast<int>(L_->len_);
462
6
  }
_ZN8ListIterIiE4DoneEv
Line
Count
Source
459
18
  bool Done() {
460
    // "unsigned size_t was a mistake"
461
18
    return i_ >= static_cast<int>(L_->len_);
462
18
  }
_ZN8ListIterIP6BigStrE4DoneEv
Line
Count
Source
459
47
  bool Done() {
460
    // "unsigned size_t was a mistake"
461
47
    return i_ >= static_cast<int>(L_->len_);
462
47
  }
463
59
  T Value() {
464
59
    return L_->slab_->items_[i_];
465
59
  }
_ZN8ListIterIP6Tuple2IiiEE5ValueEv
Line
Count
Source
463
8
  T Value() {
464
8
    return L_->slab_->items_[i_];
465
8
  }
_ZN8ListIterIiE5ValueEv
Line
Count
Source
463
16
  T Value() {
464
16
    return L_->slab_->items_[i_];
465
16
  }
_ZN8ListIterIP6BigStrE5ValueEv
Line
Count
Source
463
35
  T Value() {
464
35
    return L_->slab_->items_[i_];
465
35
  }
466
  T iterNext() {
467
    if (Done()) {
468
      throw Alloc<StopIteration>();
469
    }
470
    T ret = L_->slab_->items_[i_];
471
    Next();
472
    return ret;
473
  }
474
475
  // only for use with generators
476
1
  List<T>* GetList() {
477
1
    return L_;
478
1
  }
479
480
 private:
481
  List<T>* L_;
482
  int i_;
483
};
484
485
// list(it) returns the iterator's backing list
486
template <typename T>
487
1
List<T>* list(ListIter<T> it) {
488
1
  return list(it.GetList());
489
1
}
490
491
// TODO: Does using pointers rather than indices make this more efficient?
492
template <class T>
493
class ReverseListIter {
494
 public:
495
1
  explicit ReverseListIter(List<T>* L) : L_(L), i_(L_->len_ - 1) {
496
1
  }
497
3
  void Next() {
498
3
    i_--;
499
3
  }
500
4
  bool Done() {
501
4
    return i_ < 0;
502
4
  }
503
3
  T Value() {
504
3
    return L_->slab_->items_[i_];
505
3
  }
506
507
 private:
508
  List<T>* L_;
509
  int i_;
510
};
511
512
int max(List<int>* elems);
513
514
#endif  // MYCPP_GC_LIST_H